ADVANCED ALGORITHMS (VIII)

CHIHAO ZHANG

Last week, we introduced the Leighton-Rao relaxation of sparsest cut. The key tool we used in the analysis is Jean Bourgain's ℓ_1 embedding theorem.

Theorem 1. Let $d: V^2 \to \mathbb{R}$ be a semi-metric. There exists some $m \ge 1$ and a function $f: V \to \mathbb{R}^m$ such that for some constant c > 0 and every $x, y \in V$,

$$\|f(x) - f(y)\|_1 \le d(x, y) \le c \log |V| \cdot \|f(x) - f(y)\|_1.$$

We shall prove the theorem today. The first useful observation is that the ℓ_1 -distance of any embedding into \mathbb{R}^n can be equivalently viewed as the expected ℓ_1 -distance of random embeddings into \mathbb{R} . To see this, let $F: V \to \mathbb{R}^n$ be an embedding such that $F(x) = (F_1(x), F_2(x), \ldots, F_n(x))$ for every $x \in V$. Consider a family of *n* functions $\mathcal{F} = \{f_1, \ldots, f_n\}$ where each $f_i = mF_i$. Let $\mu_{\mathcal{F}}$ be the uniform distribution over \mathcal{F} , then it holds that

$$||F(x) - F(y)||_1 = \mathop{\mathbf{E}}_{f \sim \mu_{\mathcal{F}}} \left[\left| f(x) - f(y) \right| \right].$$

Conversely, for any collection of *n* functions $\mathcal{F} = \{f_1, \ldots, f_n\}$ where each $f_i : V \to \mathbb{R}$ maps points in *V* to reals and any distribution $\mu_{\mathcal{F}}$ over \mathcal{F} , we can define $F : V \to \mathbb{R}^n$ such that $F(x) = (F_1(x), F_2(x), \ldots, F_n(x))$ where each $F_i = \mu_{\mathcal{F}}(f_i) \cdot f_i$. It is clear that

$$\mathop{\mathbf{E}}_{f\sim\mu_{\mathcal{F}}}\left[\left|f(x)-f(y)\right|\right]=\|F(x)-F(y)\|_{1}.$$

Therefore, instead of talking about embeddings into \mathbb{R}^n , we can now equivalently work with random embeddings into \mathbb{R} . Our task is to identify a family of such embeddings and define a suitable distribution over them so that the expected ℓ_1 distance is close to d.

I guess you are already convinced in the class that we prefer to work with the following family of embeddings: Sample a set of vertices $A \subseteq V$ and embed every vertex $v \in V$ to d(v, A) where $d(v, A) \triangleq \min_{u \in A} d(v, u)$. Let us denote this embedding by $f_A(\cdot)$. It is easy to see that $f_A(\cdot)$ never increases distance between vertices.

Proposition 2. Let $d: V^2 \to \mathbb{R}$ be any semi-metric. For every $u, v \in V$ and every $A \subseteq V$, it holds that

$$\left|f_A(u) - f_A(v)\right| \le d(u, v).$$

Proof. Let $u', v' \in A$ be the points in A closest to u, v respectively. We assume without loss of generality that $f_A(u) \ge f_A(v)$, then

$$|f_A(u) - f_A(v)| = d(u, A) - d(v, A) = d(u, u') - d(v, v') \le d(u, v') - d(v, v') \le d(u, v).$$

Therefore, we only need to show that for some suitable choice of *A*, the distance between any two points after embedding does not shrink too much.

A simple strategy to sample *A* is to toss an independent *p*-biased coin on each vertex $x \in V$, and put *x* in *A* if and only if the coin goes HEAD. The following example sheds some light on how to choose *p*:

We assume the set *V* is partitioned into *m* clusters, namely $V = B_1 \sqcup B_2 \sqcup \cdots \sqcup B_m$. For every $u, v \in V$ that are in the same cluster, namely $u, v \in B_i$ for some *i*, we set d(u, v) = 1, otherwise we set d(u, v) = |V|.

Consider some $u \in B_i$ and $v \in B_j$ with $i \neq j$ and $|B_i| = |B_j| = k$. How can we sample a set *A* so that $|f_A(u) - f_A(v)|$ is large? In this special case, we expect one of the following two events happens:

- (1) $A \cap B_i = \emptyset$ and $A \cap B_i \neq \emptyset$;
- (2) $A \cap B_i \neq \emptyset$ and $A \cap B_i = \emptyset$.

If one of above events happens, then $|f_A(u) - f_A(v)| \ge |V| - 1$, otherwise $|f_A(u) - f_A(v)| \le 1$. Recall that we sample A by tossing p-biased coins, the event $A \cap B_i = \emptyset$ happens with probability $(1 - p)^k \approx e^{-pk}$. Similarly, the event $A \cap B_j \neq \emptyset$ happens with probability $1 - (1 - p)^k \approx 1 - e^{-pk}$. Therefore, if we choose $p \approx \frac{1}{k}$, then both probabilities are constant and we get large $|f_A(u) - f_A(v)|$ with constant probability.

If we need the above argument work for every pair of vertices u and v, we require each B_i is of similar size, so we can choose a uniform p. Moreover, the large contribution of A generated by $p \approx \frac{1}{k}$ comes from the fact that graph is well-clustered, namely the distance between points in different clusters is large. These properties do not hold for general graphs. We overcome these difficulties using two new ideas:

- instead of using a fixed value of *p*, we choose *p* from a large domain that can cover all the possible size of clusters;
- we don't expect that one single *p* contributes a lot, instead we amortize the analysis by showing that each possible value of *p* has its own contribution to the whole expectation.

The following is our algorithm to sample $f_A(\cdot)$:

Input: A semi-metric d : V² → R with |V| = n.
1. Choose t ∈ {1,..., log₂ n} uniformly at random.
2. Sample a set A ⊆ V by selecting each v ∈ V to be in A with probability p ≜ 2^{-t} independently.
3. Return f_A(·).

The reason that we choose *t* from $\Theta(\log n)$ numbers would be clear from the discussion later. In fact, the logarithmic factor here is exactly the one appeared in the statement of theorem 1.

We use \mathcal{D}_t to denote the distribution of A conditional on the event that we choose t in step 1 above. Based on the discussion before, we know that for every pair of vertices u, v and for each $t \in \{1, \ldots, \log_2 n\}$, the contribution of the function $f_A(\cdot)$ with $A \sim \mathcal{D}_t$ is maximized when a cluster of about 2^t size around u is hit by A and a cluster of about 2^t size around v is avoided by A (or vice versa). This motivates the following definition and the proof strategy.

For a point $u \in V$ and $\ell \in \mathbb{N}$, we use $B(u, \ell)$ to denote the set of points in V whose distance to v is at most ℓ , namely $B(u, \ell) \triangleq \{v \in V : d(u, v) \le \ell\}$. It is called the *closed ball* of radius ℓ around u. Similarly, we define the *open ball* of radius ℓ around u as $B^o(u, \ell) = \{v \in V : d(u, v) < \ell\}$. For every $t \in \{0, 1, \dots, \log_2 n\}$, define the function $\ell_t : V \to \mathbb{N}$ as

$$\ell_t(u) \triangleq \min\left\{ |B(u,\ell)| \ge 2^t \right\}.$$

It then follows from this definition that

$$|B(u, \ell_t(u))| \ge 2^t$$
, and $|B^o(u, \ell_t(u))| < 2^t$.

In the following, we fix a pair of vertices $u, v \in V$. Let t^* be the maximum t such that both $\ell_{t^*}(u)$ and $\ell_{t^*}(v)$ are at most $\frac{d(u,v)}{2}$. We now claim that for every $t \leq t^*$ and a set $A \sim \mathcal{D}_t$, it holds that (1) A hits $B(u, \ell_{t-1}(u))$ and (2) A avoids $B^o(v, \ell_t(v))$ with constant probability. In fact, (1) happens with probability $1 - (1 - 2^{-t})^{2^{t-1}} \geq 1 - e^{-\frac{1}{2}}$ and (2) happens with probability at least $(1 - 2^{-t})^{2^t} \geq \frac{1}{4}$. Moreover, the two events are independent since $t \leq t^*$. Once the two events simultaneously happen, it contributes to $|f_A(u) - f_A(v)|$ at least $\ell_t(v) - \ell_{t-1}(u)$ (it is trivially true if $\ell_t(v) - \ell_{t-1}(u) < 0$). Therefore, for some constant c > 0, $\mathbf{E}_{A \sim \mathcal{D}_t} \left[|f_A(u) - f_A(v)| \right] \geq c \cdot (\ell_t(v) - \ell_{t-1}(u))$. We can swap the roles of u and v in the above argument and obtain $\mathbf{E}_{A \sim \mathcal{D}_t} \left[|f_A(u) - f_A(v)| \right] \geq c \cdot (\ell_t(u) - \ell_{t-1}(v))$. Note that these two cases never overlap, so we can add up their contribution to the expectation and obtain

$$\mathop{\mathbf{E}}_{A\sim\mathcal{D}_t}\left[\left|f_A(u)-f_A(v)\right|\right]\geq c\cdot (\ell_t(u)-\ell_{t-1}(u)+\ell_t(v)-\ell_{t-1}(v)).$$

On the other hand, by our choice of t^* , one of $\ell_{t^*+1}(u)$ and $\ell_{t^*+1}(v)$ is larger than $\frac{d(u,v)}{2}$. We assume $\ell_{t^*+1}(u) > \frac{d(u,v)}{2}$, then $\left|B^o\left(u,\frac{d(u,v)}{2}\right)\right| < 2^{t^*+1}$. Moreover, $\ell_{t^*} \leq \frac{d(u,v)}{2}$ implies $B^o\left(u,\frac{d(u,v)}{2}\right) \cap B(v,\ell_{t^*}(v)) = \emptyset$. So similar argument gives

$$\mathop{\mathbf{E}}_{A\sim\mathcal{D}_{t^*+1}}\left[\left|f_A(u)-f_A(v)\right|\right] \ge c \cdot \left(\frac{d(u,v)}{2}-\ell_{t^*}(v)\right).$$

Therefore, if we use \mathcal{D} to denote the distribution of *A* defined by our algorithm, then for every $u, v \in V$,

$$\begin{split} \mathbf{E}_{A\sim\mathcal{D}}\left[\left|f_{A}(u)-f_{A}(v)\right|\right] &= \mathbf{E}_{t\in_{R}\left\{1,\ldots,\log_{2}n\right\}}\left[\mathbf{E}\left[\left|f_{A}(u)-f_{A}(v)\right| \mid t\right]\right] \\ &= \frac{1}{\log_{2}n}\sum_{t=1}^{\log_{2}n}\mathbf{E}_{A\sim\mathcal{D}_{t}}\left[\left|f_{A}(u)-f_{A}(v)\right|\right] \\ &\geq \frac{1}{\log_{2}n}\sum_{t=1}^{t^{*}+1}\mathbf{E}_{A\sim\mathcal{D}_{t}}\left[\left|f_{A}(u)-f_{A}(v)\right|\right] \\ &\geq \frac{c}{\log_{2}n}\cdot\left(\ell_{t^{*}}(u)-\ell_{0}(u)-\ell_{0}(v)+\frac{d(u,v)}{2}\right) \\ &\geq \frac{c}{2\log_{2}n}. \end{split}$$

This finishes the proof of theorem **1**.

However, we cannot directly use theorem 1 to actually find a sparsest cut efficiently. The reason is that in our construction, the dimension *m* appeared in the statement is too large $(m = 2^{|V|})$ is the number of subsets of *V*). But if we allow small error, then we can use our sampling algorithm to sample only poly(|V|) many functions $f_A(\cdot)$. It is a straightforward application of the Chernoff bound to show that this polynomial dimension space is good enough with high probability.