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Last week, we introduced the Leighton-Rao relaxation of sparsest cut. The key tool we used in the analysis is Jean
Bourgain’s ℓ1 embedding theorem.

Theorem 1. Let d : V 2 → R be a semi-metric. There exists somem ≥ 1 and a function f : V → Rm such that for some
constant c > 0 and every x ,y ∈ V ,

∥ f (x) − f (y)∥1 ≤ d(x ,y) ≤ c log |V | · ∥ f (x) − f (y)∥1.

We shall prove the theorem today. The first useful observation is that the ℓ1-distance of any embedding into Rn
can be equivalently viewed as the expected ℓ1-distance of random embeddings into R. To see this, let F : V → Rn
be an embedding such that F (x) = (F1(x), F2(x), . . . , Fn(x)) for every x ∈ V . Consider a family of n functions
F = { f1, . . . , fn} where each fi =mFi . Let µF be the uniform distribution over F , then it holds that

∥F (x) − F (y)∥1 = E
f ∼µF

[��f (x) − f (y)
��] .

Conversely, for any collection of n functions F = { f1, . . . , fn} where each fi : V → R maps points in V to reals
and any distribution µF over F , we can define F : V → Rn such that F (x) = (F1(x), F2(x), . . . , Fn(x)) where each
Fi = µF(fi ) · fi . It is clear that

E
f ∼µF

[��f (x) − f (y)
��] = ∥F (x) − F (y)∥1.

Therefore, instead of talking about embeddings into Rn , we can now equivalently work with random embeddings
into R. Our task is to identify a family of such embeddings and define a suitable distribution over them so that the
expected ℓ1 distance is close to d .

I guess you are already convinced in the class that we prefer to work with the following family of embeddings:
Sample a set of vertices A ⊆ V and embed every vertex v ∈ V to d(v,A) where d(v,A) ≜ minu ∈A d(v,u). Let us
denote this embedding by fA(·). It is easy to see that fA(·) never increases distance between vertices.

Proposition 2. Let d : V 2 → R be any semi-metric. For every u,v ∈ V and every A ⊆ V , it holds that��fA(u) − fA(v)
�� ≤ d(u,v).

Proof. Let u ′,v ′ ∈ A be the points in A closest to u,v respectively. We assume without loss of generality that
fA(u) ≥ fA(v), then��fA(u) − fA(v)

�� = d(u,A) − d(v,A) = d(u,u ′) − d(v,v ′) ≤ d(u,v ′) − d(v,v ′) ≤ d(u,v).

□

Therefore, we only need to show that for some suitable choice of A, the distance between any two points after
embedding does not shrink too much.

A simple strategy to sample A is to toss an independent p-biased coin on each vertex x ∈ V , and put x in A if and
only if the coin goes HEAD. The following example sheds some light on how to choose p:

We assume the set V is partitioned intom clusters, namely V = B1 ⊔ B2 ⊔ · · · ⊔ Bm . For every u,v ∈ V that are
in the same cluster, namely u,v ∈ Bi for some i , we set d(u,v) = 1, otherwise we set d(u,v) = |V |.

Consider someu ∈ Bi andv ∈ Bj with i , j and |Bi | =
��Bj �� = k . How canwe sample a setA so that

��fA(u) − fA(v)
��

is large? In this special case, we expect one of the following two events happens:
(1) A ∩ Bi = � and A ∩ Bj , �;
(2) A ∩ Bi , � and A ∩ Bj = �.
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If one of above events happens, then
��fA(u) − fA(v)

�� ≥ |V | −1, otherwise
��fA(u) − fA(v)

�� ≤ 1. Recall that we sample
A by tossing p-biased coins, the event A ∩ Bi = � happens with probability (1 − p)k ≈ e−pk . Similarly, the event
A∩ Bj , � happens with probability 1 − (1 − p)k ≈ 1 − e−pk . Therefore, if we choose p ≈ 1

k , then both probabilities
are constant and we get large

��fA(u) − fA(v)
�� with constant probability.

If we need the above argument work for every pair of vertices u andv , we require each Bi is of similar size, so we
can choose a uniform p. Moreover, the large contribution of A generated by p ≈ 1

k comes from the fact that graph
is well-clustered, namely the distance between points in different clusters is large. These properties do not hold for
general graphs. We overcome these difficulties using two new ideas:

• instead of using a fixed value of p, we choose p from a large domain that can cover all the possible size of
clusters;

• we don’t expect that one single p contributes a lot, instead we amortize the analysis by showing that each
possible value of p has its own contribution to the whole expectation.

The following is our algorithm to sample fA(·):

Input: A semi-metric d : V 2 → R with |V | = n.
1. Choose t ∈

{
1, . . . , log2 n

}
uniformly at random.

2. Sample a set A ⊆ V by selecting each v ∈ V to be in A with
probability p ≜ 2−t independently.

3. Return fA(·).

The reason that we choose t from Θ(logn) numbers would be clear from the discussion later. In fact, the loga-
rithmic factor here is exactly the one appeared in the statement of theorem 1.

We use Dt to denote the distribution of A conditional on the event that we choose t in step 1 above. Based on
the discussion before, we know that for every pair of vertices u,v and for each t ∈

{
1, . . . , log2 n

}
, the contribution

of the function fA(·) with A ∼ Dt is maximized when a cluster of about 2t size around u is hit by A and a cluster of
about 2t size around v is avoided byA (or vice versa). This motivates the following definition and the proof strategy.

For a point u ∈ V and ℓ ∈ N, we use B(u, ℓ) to denote the set of points in V whose distance to v is at most ℓ,
namely B(u, ℓ) ≜

{
v ∈ V : d(u,v) ≤ ℓ

}
. It is called the closed ball of radius ℓ aroundu. Similarly, we define the open

ball of radius ℓ around u as Bo(u, ℓ) =
{
v ∈ V : d(u,v) < ℓ

}
. For every t ∈

{
0, 1, . . . , log2 n

}
, define the function

ℓt : V → N as
ℓt (u) ≜ min

ℓ

{��B(u, ℓ)�� ≥ 2t
}
.

It then follows from this definition that��B(u, ℓt (u))�� ≥ 2t , and
��Bo(u, ℓt (u))�� < 2t .

In the following, we fix a pair of vertices u,v ∈ V . Let t∗ be the maximum t such that both ℓt ∗(u) and ℓt ∗(v) are at
most d(u,v)

2 . We now claim that for every t ≤ t∗ and a set A ∼ Dt , it holds that (1) A hits B(u, ℓt−1(u)) and (2) A
avoids Bo(v, ℓt (v)) with constant probability. In fact, (1) happens with probability 1 − (1 − 2−t )2

t−1 ≥ 1 − e−
1
2 and

(2) happens with probability at least (1 − 2−t )2
t ≥ 1

4 . Moreover, the two events are independent since t ≤ t∗. Once
the two events simultaneously happen, it contributes to

��fA(u) − fA(v)
�� at least ℓt (v) − ℓt−1(u) (it is trivially true if

ℓt (v) − ℓt−1(u) < 0). Therefore, for some constant c > 0, EA∼Dt

[��fA(u) − fA(v)
��] ≥ c · (ℓt (v) − ℓt−1(u)). We can

swap the roles of u and v in the above argument and obtain EA∼Dt

[��fA(u) − fA(v)
��] ≥ c · (ℓt (u) − ℓt−1(v)). Note

that these two cases never overlap, so we can add up their contribution to the expectation and obtain
E

A∼Dt

[��fA(u) − fA(v)
��] ≥ c · (ℓt (u) − ℓt−1(u) + ℓt (v) − ℓt−1(v)).

On the other hand, by our choice of t∗, one of ℓt ∗+1(u) and ℓt ∗+1(v) is larger than d(u,v)
2 . We assume ℓt ∗+1(u) >

d(u,v)
2 , then

���Bo (u, d(u,v)2

)��� < 2t
∗+1. Moreover, ℓt ∗ ≤ d(u,v)

2 implies Bo
(
u,

d(u,v)
2

)
∩ B(v, ℓt ∗(v)) = �. So similar

argument gives

E
A∼Dt∗+1

[��fA(u) − fA(v)
��] ≥ c ·

(
d(u,v)

2
− ℓt ∗(v)

)
.

2



Therefore, if we use D to denote the distribution of A defined by our algorithm, then for every u,v ∈ V ,
E

A∼D

[��fA(u) − fA(v)
��] = E

t ∈R{1, ..., log2 n}
[
E
[��fA(u) − fA(v)

�� �� t ] ]
=

1

log2 n

log2 n∑
t=1

E
A∼Dt

[��fA(u) − fA(v)
��]

≥ 1

log2 n

t ∗+1∑
t=1

E
A∼Dt

[��fA(u) − fA(v)
��]

≥ c

log2 n
·
(
ℓt ∗(u) − ℓ0(u) − ℓ0(v) +

d(u,v)

2

)
≥ c

2 log2 n
.

This finishes the proof of theorem 1.
However, we cannot directly use theorem 1 to actually find a sparsest cut efficiently. The reason is that in our

construction, the dimensionm appeared in the statement is too large (m = 2 |V | is the number of subsets of V ). But
if we allow small error, then we can use our sampling algorithm to sample only poly(|V |)many functions fA(·). It is
a straightforward application of the Chernoff bound to show that this polynomial dimension space is good enough
with high probability.
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