ADVANCED ALGORITHMS (VIII)
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Last week, we introduced the Leighton-Rao relaxation of sparsest cut. The key tool we used in the analysis is Jean
Bourgain’s {; embedding theorem.

Theorem 1. Letd : V? — R be a semi-metric. There exists somem > 1 and a function f : V. — R™ such that for some
constant ¢ > 0 and everyx,y €V,

If(x) = f(Wlh < d(x,y) <clog|V]-[If(x) - f()lh-

We shall prove the theorem today. The first useful observation is that the £;-distance of any embedding into R"
can be equivalently viewed as the expected {;-distance of random embeddings into R. To see this, let F : V — R”
be an embedding such that F(x) = (Fi(x), Fa(x),...,Fn(x)) for every x € V. Consider a family of n functions
F =A{f1,..., fu} where each f; = mF;. Let pi# be the uniform distribution over ¥, then it holds that

IFG) = F@y)lh = B [[f(0) - FWl-
f~uy
Conversely, for any collection of n functions ¥ = {fi,..., fn} where each f; : V.— R maps points in V to reals
and any distribution p# over ¥, we can define F : V — R” such that F(x) = (F;(x), Fa(x), ..., Fy(x)) where each
F; = pg(fi) - fi- It is clear that

E [[f(x) = fW)] = IF(x) = F(y)lls.

f~pr
Therefore, instead of talking about embeddings into R”, we can now equivalently work with random embeddings
into R. Our task is to identify a family of such embeddings and define a suitable distribution over them so that the
expected ¢; distance is close to d.

I guess you are already convinced in the class that we prefer to work with the following family of embeddings:
Sample a set of vertices A C V and embed every vertex v € V to d(v, A) where d(v, A) £ mingea d(v,u). Let us
denote this embedding by f4(-). It is easy to see that f4(-) never increases distance between vertices.

Proposition 2. Letd : V2 — R be any semi-metric. For everyu,v € V and every A C V, it holds that

|fa() = fa(v)| < d(u,v).

Proof. Let u’,v” € A be the points in A closest to u,v respectively. We assume without loss of generality that

fa(u) > fa(v), then
|fa(w) = fa(v)| = d(u, A) = d(v,A) = d(u,u") = d(v,0") < d(u,0") - d(v,0") < d(u,0).

]

Therefore, we only need to show that for some suitable choice of A, the distance between any two points after
embedding does not shrink too much.

A simple strategy to sample A is to toss an independent p-biased coin on each vertex x € V, and put x in A if and
only if the coin goes HEAD. The following example sheds some light on how to choose p:

We assume the set V is partitioned into m clusters, namely V = By LI By LI - - - LI By,. For every u,v € V that are
in the same cluster, namely u, v € B; for some i, we set d(u,v) = 1, otherwise we set d(u,v) = |V|.

Consider some u € B; and v € B; withi # jand |B;| = |B;| = k. How can we sample a set A so that | fa(u) — fa(v)|
is large? In this special case, we expect one of the following two events happens:

(1) AnB; =@ and AN B; # @;
(2) AnB,- ;t@andAﬂBj:@.



If one of above events happens, then | f4(u) — fa(v)| > [V| -1, otherwise | fa(u) — fa(v)| < 1. Recall that we sample
A by tossing p-biased coins, the event A N B; = @ happens with probability (1 — p)¥ ~ e ?*. Similarly, the event
AN B; # @ happens with probability 1 — (1 — p)* ~ 1 — ek Therefore, if we choose p ~ %, then both probabilities
are constant and we get large | fu(u) — fa(v)| with constant probability.

If we need the above argument work for every pair of vertices u and v, we require each B; is of similar size, so we
can choose a uniform p. Moreover, the large contribution of A generated by p ~ ¢ comes from the fact that graph
is well-clustered, namely the distance between points in different clusters is large. These properties do not hold for
general graphs. We overcome these difficulties using two new ideas:

e instead of using a fixed value of p, we choose p from a large domain that can cover all the possible size of
clusters;

e we don’t expect that one single p contributes a lot, instead we amortize the analysis by showing that each
possible value of p has its own contribution to the whole expectation.

The following is our algorithm to sample fa(-):

Input: A semi-metric d : V2 — R with |V| = n.
1. Choose t € {1, ..., log, n} uniformly at random.
2. Sample a set A C V by selecting each v € V to be in A with
probability p £ 27 independently.
3. Return fu(+).

The reason that we choose t from O(logn) numbers would be clear from the discussion later. In fact, the loga-
rithmic factor here is exactly the one appeared in the statement of theorem 1.

We use D, to denote the distribution of A conditional on the event that we choose t in step 1 above. Based on
the discussion before, we know that for every pair of vertices u, v and for each t € {1, ..., ]og, n}, the contribution
of the function f4(-) with A ~ 9; is maximized when a cluster of about 2’ size around u is hit by A and a cluster of
about 2! size around v is avoided by A (or vice versa). This motivates the following definition and the proof strategy.

For a point u € V and ¢ € N, we use B(u, {) to denote the set of points in V whose distance to v is at most ¢,
namely B(u, {) {v eV :d(uv) < f}. It is called the closed ball of radius ¢ around u. Similarly, we define the open
ball of radius ¢ around u as B°(u,{) = {v eV :duv) < f}. For every ¢ € {O, 1,....log, n}, define the function
l; -V —> Nas

4 (u) £ m}n {|B(u,0)| = 2'}.
It then follows from this definition that
|B(u, £, (u))| > 2", and |B°(u, €, (u))| < 2°.

In the following, we fix a pair of vertices u,v € V. Let t* be the maximum ¢ such that both ¢;- (u) and ¢;-(v) are at
most d(”T’v). We now claim that for every ¢ < t* and a set A ~ D, it holds that (1) A hits B(u, {;_1(u)) and (2) A
avoids B°(v, £;(v)) with constant probability. In fact, (1) happens with probability 1 — (1 —271)2"" > 1 —¢~2 and
(2) happens with probability at least (1 — 27¢ )2t > i. Moreover, the two events are independent since t < t*. Once
the two events simultaneously happen, it contributes to | fa(u) — fa(v)| at least £, (v) — €, (u) (it is trivially true if
€:(v) = £;-1(u) < 0). Therefore, for some constant ¢ > 0, Ea~o, [|fa(u) — fa(®)|] = ¢+ (€:(v) = €;-1(u)). We can

swap the roles of u and v in the above argument and obtain Ea~p, [|fa(u) - fa(v)|] = ¢ (£:(u) — €,-1(v)). Note
that these two cases never overlap, so we can add up their contribution to the expectation and obtain

AED ”fA(u) —fA(U)” > ¢ (C(u) = o1 (u) + €:(v) = €121 (0)).

~t

On the other hand, by our choice of t*, one of £;+11(u) and ¢;+11(v) is larger than M We assume ;41 (u) >
d(”T’v), then |B° (u, @)‘ < 2"+ Moreover, €5 < d(”T’v) implies B° (u, @) N B(v,{4-(v)) = @. So similar

argument gives
E - [|faw) - fa@)|] 2 c- (d<”2’ 2 e, (v)) .

AND:*-H



Therefore, if we use D to denote the distribution of A defined by our algorithm, then for every u,v € V,

E [|[fa(w) - fa(w)|] = E , [E [|fa(u) = fa(o)| | t]]

- 10g12 n ; Awlzﬂt HfA(u) B fA(U)”
s
z logy n t=1 A~EZ), [|fA(u) - fA(U)H
c d(u,v)
> °
~ 2logyn

This finishes the proof of theorem 1.

However, we cannot directly use theorem 1 to actually find a sparsest cut efficiently. The reason is that in our
construction, the dimension m appeared in the statement is too large (m = 2!V! is the number of subsets of V). But
if we allow small error, then we can use our sampling algorithm to sample only poly(|V|) many functions fa(+). It is
a straightforward application of the Chernoff bound to show that this polynomial dimension space is good enough
with high probability.



