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1. Sparsest Cut

The problem of sparsest cut asks for a cut that is both sparse and balanced. For a cut (S, S̄), define its uniform
sparsity

usc(S) ≜
��E(S, S̄)��
|S | ·

��S̄ �� .
The uniform sparsest cut of a graph G is

usc(G) ≜ min
S

usc(S).

In d-regular graphs, the quantity is closely related to the edge expansion φ(S) we met before. Recall that

φ(S) =

��E(S, S̄)��
d |S | ,

it is easy to see

(1)
usc(S)

2
≤ d

n
· φ(S) ≤ usc(S).

Therefore, approximating usc(G) is equivalent to approximating φ(G) up to a factor of two. It then immediately
follows from Cheeger’s inequality that we can bound φ(G) in terms of the λ2 of the normalized Laplacian N . We
now show that we can directly relate λ2 with usc(G).

By the variational characterization of eigenvalues, we have

λ2 = min
x∈Rn\{0}

x⊥1

RN (x) = min
x∈Rn\{0}

x⊥1

∑
{i, j }∈E(xi − x j)

2

d
∑

i ∈V x2
i

Observe that ∑
{i, j }∈(V

2
)

=
1

2

∑
(i, j)∈V 2

(xi − x j)
2 = n

∑
i ∈V

x2
i −

∑
(i, j)∈V 2

xix j = n
∑
i ∈V

x2
i −

(∑
i ∈V

xi

)2
= n

∑
i ∈V

x2
i ,

where the last equality is due to x ⊥ 1. We can further write λ2 as

(2) λ2 =
n

d
· min
x∈Rn\{0}

x⊥1

∑
{i, j }∈E(xi − x j)

2∑
{i, j }∈(V

2
)(xi − x j)2

=
n

d
· min
x∈Rn\{0}

∑
{i, j }∈E(xi − x j)

2∑
{i, j }∈(V

2
)(xi − x j)2

.

In the last equality, we can safely remove the constraint x ⊥ 1 since moving in the direction of 1 does not change
the ratio we are optimizing.

On the otherhand, we can view usc(S) as

usc(S) =
∑

{i, j }∈E(1S (i) − 1S (j))2∑
{i, j }∈(V

2
)(1S (i) − 1S (j))2

,

which implies

(3) usc(G) = min
x∈{0,1}V \{0,1}

∑
{i, j }∈E(xi − x j)

2∑
{i, j }∈(V

2
)(xi − x j)2

.
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Comparing eq. (2) and eq. (3) shows that d
n · λ2 is a relaxation of usc(G), by extending the searching range of

x from {0, 1}V \ {0, 1} to Rn \ {1}. This immediately implies d
n · λ2 ≤ usc(G). Along with eq. (1), we obtain an

alternative proof of λ2 ≤ 2φ(G), the lower bound part of Cheeger’s inequality.

2. Leighton-Rao Relaxation

We have seen a relaxation of the uniform sparsest cut, by understanding it as an optimization problem over a
hyper cube. We now introduce its non-uniform version and a better relaxation.

In the definition of uniform sparsity of S , the denominator of usc(S)∑
{i, j }∈(V

2
)

(1S (i) − 1S (j))2

sums up all unordered pairs of vertices in V . This can be viewed as enumerating all edges of a clques whose vertex
set isV . The non-uniform sparsity generalizes the clique to an arbitrary graph with vertex setV . To distinguish this
graph with the original input graph, we let G = (V ,EG) and H = (V ,EH ). Then

scG,H (S) ≜
∑

{i, j }∈EG (1S (i) − 1S (j))2∑
{i, j }∈EH (1S (i) − 1S (j))2

,

and
sc(G,H) ≜ min

S ⊆V
scG,H (S).

It is clear that usc(G) = sc(G,Kn) where n = |V |. We shall see in the next section a more intuitive interpretation of
the non-uniformity. But for now, we first take a look at a relaxation of sc(G,H).

The idea is to view (1S (i) − 1S (j))2 as a distance between two points i and j. Specifically, if we introduce the
function dS : V 2 → R as dS (i, j) = (1S (i) − 1S (j))2, then it is clear that dS (·, ·) is a semi-metric1. The Leighton-Rao
relaxation relaxes the domain of the optimization from dS to arbitrary semi-metric d :

(4) LR(G,H) ≜ min
semi-metric d :V 2→R

∑
{i, j }∈EG d(i, j)∑
{i, j }∈EH d(i, j)

.

This optimization problem is equivalent to the following linear program, and therefore solvable in polynomial-
time.

min
∑

{i, j }∈EG
d(i, j)

s.t.
∑

{i, j }∈EG
d(i, j) = 1

d(i, j) ≥ 0, ∀i, j ∈ V

d(i, j) = d(j, i), ∀i, j ∈ V

d(i, j) + d(j,k) ≥ d(i,k), ∀i, j,k ∈ V

Since it is a relaxation, we have
LR(G,H) ≤ sc(G,H).

The main result today is to show that the relaxation is not too bad.

Theorem 1. There exists a constant c > 0 such that

LR(G,H) ≥ sc(G,H)

c logn ,

where n = |V |.

1A function d : V 2 → R is a semi-metric if (1) d(x, y) = d(y, x) ≥ 0 for every x, y ∈ V , (2) the triangle inequality holds.
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3. Multicommodity Flow

Before proving theorem 1, let’s see another way to come up with the expression LR(G,H) defined in eq. (4). The
multicommodity flow problem is a natural generalization of themax flow problem. Suppose we are given a undirected
graph G = (V ,E) andm pairs of sources and sinks (s1, t1), . . . , (sm , tm). Suppose each edge {i, j} ∈ E has capacity
1. The problem asks for the maximum amount of flow that one can route from each source to the corresponding
sink simultaniously, without violating the capacity on every edge. We use Pi =

{
pij

}
to denote all simple paths

between si and ti . Let f be a variable indicating the max flow, or throughput that we want to maximized, and f ij be
the amount of flow on each path pij ∈ Pi . Then the problem can be formally formulated as a linear programming:

max f

s.t.
∑

pij ∈Pi

f ij ≥ f , ∀i = 1, . . . ,m,∑
pij ∋e

f ij ≤ 1, ∀e ∈ E,

f ≥ 0,

f ij ≥ 0, ∀i = 1, . . . ,m and each pij ∈ Pi .

The problem is the ordinary (unit capacity) max flow problem whenm = 1. We are interested in the dual of this
linear program. To this end, we introduce a dual variable ℓi for each i = 1, . . . ,m and a dual variable ye for each
edge e ∈ E. The dual program is

min
∑
e ∈E

ye

s.t.
m∑
i=1

ℓi ≥ 1,∑
e ∈pij

ye ≥ ℓi , ∀i = 1, . . . ,m and each pij ∈ Pi ,

ℓi ≥ 0, ∀i = 1, . . . ,m,

ye ≥ 0, ∀e ∈ E.

We write G = (V ,EG) and let H = (V ,EH ) be a graph whose edges are those pairs of source and sink, namely
{u,v} ∈ E if and only if si = u and ti = v for some i ∈ [m]. It is an exercise to verify that the dual program is
equivalent to

min
semi-metric d :V 2→R

∑
{i, j }∈EG d(i, j)∑
{i, j }∈EH d(i, j)

,

which is exactly LR(G,H).

4. ℓ1-relaxation

We introduce an “intermediate relaxation” for sc(G,H), namely by only allowing those ℓ1 metrics. Define

ℓ1sc(G,H) ≜ min
m≥1

min
f :V→Rm

∑
{i, j }∈EG ∥ f (i) − f (j)∥1∑
{i, j }∈EH ∥ f (i) − f (j)∥1

.

It is clear that ℓ1sc(G,H) is a relaxation of sc(G,H) since ∥1S (i) − 1S (j)∥1 = (1S (i) − 1S (j))2. Surprisingly, ℓ1sc
does not lose anything:

Proposition 2.
ℓ1sc(G,H) = sc(G,H).
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Proof. Only need to show ℓ1sc(G,H) ≥ sc(G,H). We fixm and f that achieve the minimum in

ℓ1sc(G,H) = min
m≥1

min
f :V→Rm

∑
{i, j }∈EG ∥ f (i) − f (j)∥1∑
{i, j }∈EH ∥ f (i) − f (j)∥1

.

Further assuming that f (x) = (f1(x), f2(x), . . . , fm(x)) ∈ Rm , we have

ℓ1sc(G,H) =

∑
{i, j }∈EG ∥ f (i) − f (j)∥1∑
{i, j }∈EH ∥ f (i) − f (j)∥1

=

∑
{i, j }∈EG

∑m
k=1

��fk (i) − fk (j)
��∑

{i, j }∈EH
∑m

k=1

��fk (i) − fk (j)
��

=

∑m
k=1

∑
{i, j }∈EG

��fk (i) − fk (j)
��∑m

k=1

∑
{i, j }∈EH

��fk (i) − fk (j)
��

≥ min
k

∑
{i, j }∈EG

��fk (i) − fk (j)
��∑

{i, j }∈EH
��fk (i) − fk (j)

��
Let k∗ be the one that achieves the minimum above, we only need to show∑

{i, j }∈EG
��fk∗(i) − fk∗(j)

��∑
{i, j }∈EH

��fk∗(i) − fk∗(j)
�� ≥ sc(G,H),

or equivalent there exists some S ⊆ V such that∑
{i, j }∈EG

��fk∗(i) − fk∗(j)
��∑

{i, j }∈EH
��fk∗(i) − fk∗(j)

�� ≥ scG,H (S).

We prove the existence of S using probabilistic method. Since shifting and scaling of fk∗(·) does not change the ratio,
we can assume without loss of generality that 0 = fk∗(1) ≤ fk∗(2) ≤ · · · ≤ fk∗(n) = 1. Then we choose a real
t ∈ [0, 1] uniformly at random and let St =

{
i ∈ V : fk∗(i) ≤ t

}
. It is easy to verify that

E
[
(1St (i) − 1St (j))

2] = ��fk∗(i) − fk∗(j)
�� .

Therefore,
E

[∑
{i, j }∈EG (1St (i) − 1St (j))

2]
E

[∑
{i, j }∈EH (1St (i) − 1St (j))

2] =

∑
{i, j }∈EG

��fk∗(i) − fk∗(j)
��∑

{i, j }∈EH
��fk∗(i) − fk∗(j)

�� .
The proof can then be completed by applying the argument in the last part of the last lecture notes. □

Armed with proposition 2, we only need to compare LR(G,H) with ℓ1sc(G,H). The following powerful theorem
of Jean Bourgain is at our service.

Theorem 3. Let d : V 2 → R be a semi-metric. There exists somem ≥ 1 and a function f : V → Rm such that for some
constant c > 0 and every x ,y ∈ V ,

∥ f (x) − f (y)∥1 ≤ d(x ,y) ≤ c log |V | · ∥ f (x) − f (y)∥1.

It is straightforward to prove theorem 1 using theorem 3.

Proof of theorem 1. Let d∗ be the semi-metric that achieves minimum in the definition of LR(G,H) and f ∗ : V → R
be the one guaranteed by theorem 3 with respect to d∗. Then by proposition 2,

LR(G,H) =

∑
{i, j }∈EG d∗(i, j)∑
{i, j }∈EH d∗(i, j)

≥
∑

{i, j }∈EG ∥ f ∗(i) − f ∗(j)∥1
c logn · ∑{i, j }∈EH ∥ f ∗(i) − f ∗(j)∥1

≥ ℓ1sc(G,H)

c logn =
sc(G,H)

c logn .

□
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