
ADVANCED ALGORITHMS (VI)

CHIHAO ZHANG

Last week we introduced the notion of edge expansion, and its relation with the eigenvalues of the Laplacian. For
general graphs (not necessarily d-regular), we define for every S ⊆ V ,

φ(S) =

��E(S, S̄)��∑
i ∈S deg(i)

,

and
φ(G) = min

S ⊆V
max

{
φ(S),φ(S̄)

}
.

The Cheeger’s inequality provides both an upper bound and a lower bound for φ(G), in terms of the second
smallest eigenvalue of the normalized Laplacian N :

λ2
2

≤ φ(G) ≤
√
2λ2.

Today we will prove the inequality.

1. Proof of the Lower Bound

In this section, we prove λ2 ≤ 2φ(G). We use the characterization

λ2 = min
2-dim subspace X ⊆Rn

max
x∈X \{0}

RN (x).

Therefore, in order to prove that λ2 is small, we only need to show that for some subspace X ⊆ Rn , it holds that for
every x ∈ X \ {0}, RN (x) ≤ 2φ(G).

Recall that φ(G) = minS ⊆V max
{
φ(S),φ(S̄)

}
. We let S be the set of vertices achieving the minimum, namely

φ(S) = φ(G). Let 1S ∈ Rn be the vector that

1S (i) =

{
1, i ∈ S

0, i < S .

Define 1S̄ similarly. We let X be the space span(D 1
2 1S ,D

1
2 1S̄ ) where D ≜ diag(deg(1), deg(2), . . . , deg(n)). Then

every x ∈ X can be written as x = aD
1
2 1S + bD

1
2 1S̄ for some a,b ∈ R. First note that

RN (aD
1
2 1S ) = RN (D

1
2 1S ) =

⟨D 1
2 1S ,ND

1
2 1S ⟩

⟨D 1
2 1S ,D

1
2 1S ⟩

=
⟨1S ,L1S ⟩
⟨1S ,D1S ⟩

= φ(S),

and similarly

RN (bD
1
2 1S̄ ) = φ(S̄) ≤ φ(S).

If one of a or b is zero, the inequality obviously follows. Therefore, as long as we can show for every a,b , 0, it holds
taht

RN (x) = RN (aD
1
2 1S + bD

1
2 1S̄ ) ≤ RN (aD

1
2 1S ) + RN (bD

1
2 1S̄ ),

the inequality is proved.
In fact, we prove the following stronger statement: For every symmetric M , every pair of nonzero vectors x,y

such that ⟨x,y⟩ = 0, it holds that RM (x+ y) ≤ 2 ·max
{
RM (x),RM (y)

}
.
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Consider the spectral decompositions of the two vectors x =
∑n

i=1 aivi and y =
∑n

i=1 bivi . We have

RM (x+ y) =
⟨∑n

i=1(ai + bi )vi ,M(
∑n

i=1(ai + bi )vi )⟩
⟨∑n

i=1(ai + bi )vi ,
∑n

i=1(ai + bi )vi ⟩

=

∑n
i=1 λi (ai + bi )

2∑n
i=1(ai + bi )2

1⃝
≤

∑n
i=1 λi2(a

2
i + b2i )∑n

i=1 a
2
i +

∑n
i=1 b

2
i

2⃝
≤ 2 ·max

{∑n
i=1 λia

2
i∑n

i=1 a
2
i
,

∑n
i=1 λib

2
i∑n

i=1 b
2
i

}
= 2 ·max

{
RM (x),RM (y)

}
.

In the above calculation, the denominator of 1⃝ is due to x ⊥ y and the numerator follows from (a+b)2 ≤ 2(a2+b2);
2⃝ is due to the inequality a1+a2

b1+b2
≤ maxi=1,2

ai
bi

for nonnegative ai and bi .

2. Proof of the Upper Bound

The proof of the upper bound φ(G) ≤
√
2λ2 is more involved. The proof we are going to introduce today is in fact

an analysis of the following approximation algorithm for edge expansion φ(G).

Fiedler’s Algorithm
Input: A graph G = (V ,E) and a vector x ∈ Rn .

1. Number the vertex set V = {v1, . . . ,vn} according to y ≜
D− 1

2 x so that y(i) ≤ y(i + 1) for every i = 1, . . . ,n − 1.
2. For every i = 1, 2, . . . , ⌊ n2 ⌋, define Si = {1, 2, . . . , i}.
3. Return min1≤i≤⌊ n

2
⌋ φ(Si ).

The performance of Fiedler’s algorithm depends on the input vector x. We now prove

Theorem 1. For every x ⊥ D
1
2 1, Fiedler’s algorithm finds a set S such that

φ(S) ≤
√
2RN (x).

Then Cheeger’s inequality follows by taking x to v2.
Now we start to prove Theorem 1. Let x ⊥ D

1
2 1 be a vector. Fiedler’s algorithm defines n sets S1, . . . , Sn and

returns the one with minimum expansion. We now use probabilistic method to show that one of Si has expansion
at most

√
2RN (x).

We already know from the last lecture that if we let y = D− 1
2 x, then RN (x) = ⟨y,Ly⟩

⟨y,Dy⟩ . Moreover, x ⊥ D
1
2 1 if and

only if y ⊥ D1. Assume without loss of generality that y(1) ≤ y(2) ≤ · · · ≤ y(n). Let ℓ be the smallest index such
that ∑

k≤ℓ
deg(vk ) ≥

∑
k>ℓ

deg(vk ).

We shift the vector y by letting y′ = y − y(j)1. It is not hard to see that ⟨y′,Ly′⟩
⟨y′,Dy′⟩ ≤ ⟨y,Ly⟩

⟨y,Dy⟩ , since shifting in the
direction of 1 does not change the numerator but increasing the denominator due to y ⊥ D1 (this can be verified
by considering ⟨y + z1,D(y + z1)⟩ as a function on z and looking at its derivative). Moreover, if for every t ∈ R,
we let St ≜

{
vi : y′(i) ≤ t

}
, then every St is among the separators considered by Fiedler’s algorithm with input

x. Therefore, we can sample separators considered by Fiedler’s algorithm by sampling a number t in R. To define
a suitable distribution on R, we can further assume y′(1)2 + y′(n)2 = 1 without loss of generality. Then we can
sample t in [y′(1),y′(n)] with probability density f (t) = 2 |t | (Figure 1).
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Figure 1. The probability desnity f (t) = 2 |t |.

Everything is going to be in a very nice form with this mysterious distribution. Recall that

φ(G) = min
S ⊆V

max
{
φ(S),φ(S̄)

}
= min

S ⊆V

��E(S, S̄)��
min

{∑
i ∈S deg(i),

∑
i ∈S̄ deg(i)

} ,
we have

E
[��E(St , S̄t )��] = ∑

{i, j }∈E
i≤j

Pr [i ∈ St , j ∈ S̄t ]

=
∑

{i, j }∈E
i≤j

∫ y′(j)

y′(i)
f (t) dt

=
∑

{i, j }∈E
i≤j

sgn(y′(j)) · y′(j)2 − sgn(y′(i)) · y′(i)2

≤
∑

{i, j }∈E
i≤j

(��y′(j)
��+ ��y′(i)

��) (y′(j) − y′(i))

1⃝
≤

√√√ ∑
{i, j }∈E
i≤j

(��y′(j)
��+ ��y′(i)

��)2 ·√√√ ∑
{i, j }∈E
i≤j

(y′(j) − y′(i))2

2⃝
≤

√√√ ∑
{i, j }∈E
i≤j

2(y′(i)2 + y′(j)2) ·
√√√ ∑

{i, j }∈E
i≤j

(y′(j) − y′(i))2

=

√
2
∑
i ∈V

deg(i) · y′(i)2 ·
√√√ ∑

{i, j }∈E
i≤j

(y′(j) − y′(i))2

=
√
2⟨y′,Dy′⟩ ·

√√√ ∑
{i, j }∈E
i≤j

(y′(j) − y′(i))2

3



where 1⃝ uses Cauchy-Schwartz and 2⃝ is due to the inequality (a + b)2 ≤ 2(a2 + b2). Also by the definition of y′,
it holds that

E
min


∑
i ∈St

deg(i),
∑
i ∈S̄t

deg(i)

 = Pr [t ≤ 0] · E

[∑
i ∈St

deg(i)

����� t ≤ 0

]
+ Pr [t > 0] · E


∑
i ∈S̄t

deg(i)

������ t > 0


=

∑
i ∈V

deg(i) · Pr [t ≤ 0, i ∈ St ] +
∑
i ∈V

deg(i) · Pr [t > 0, i ∈ S̄t ]

=
∑
i≤ℓ

deg(i) · Pr [y′(i) ≤ t ≤ 0] +
∑
i>ℓ

deg(i) · Pr [0 ≤ t ≤ y′(i)]

=
∑
i ∈V

deg(i) · y′(i)2 = ⟨y′,Dy′⟩.

Therefore, putting above together yields

E
[��E(St , S̄t )��]

E
[
min

{∑
i ∈St deg(i),

∑
i ∈S̄t deg(i)

}] ≤

√
2⟨y′,Dy′⟩ ·

√∑
{i, j }∈E (y′(j) − y′(i))2

⟨y′,Dy′⟩ =

√
2⟨y′,Ly′⟩
⟨y′,Dy′⟩ ≤

√
2⟨y,Ly⟩
⟨y,Dy⟩ =

√
2RN (x).

It remains to verify that for two random variables X ≥ 0 and Y > 0, E[X ]

E[Y ]
≤ r implies Pr

[X
Y ≤ r

]
> 0. To see this,

notice that
E [X ]

E [Y ]
≤ r ⇐⇒ E [X − rY ] ≤ 0 =⇒ Pr [X − rY ≤ 0] > 0 =⇒ Pr

[
X

Y
≤ r

]
> 0.

3. Remark

In the class I proved Cheeger’s inequality for regular graphs. Please carefully read the proof for general graphs
here. The proofs are adapted from two wonderful lecture notes [Spi15, Tre16].
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