ADVANCED ALGORITHMS (VI)

CHIHAO ZHANG

Last week we introduced the notion of edge expansion, and its relation with the eigenvalues of the Laplacian. For
general graphs (not necessarily d-regular), we define for every S C V,

RS
2ies deg(i) ’
and

$(G) = minmax {9(5). 6(5)}

The Cheeger’s inequality provides both an upper bound and a lower bound for ¢(G), in terms of the second
smallest eigenvalue of the normalized Laplacian N:

2 < 4(6) < 2.

Today we will prove the inequality.

1. PrRoor oF THE LOWER BOUND

In this section, we prove A2 < 2¢(G). We use the characterization

Ao = min max Ry(x).
2-dim subspace X CR"” xeX\{0}

Therefore, in order to prove that A5 is small, we only need to show that for some subspace X € R", it holds that for
every x € X \ {0}, Ry(x) < 2¢(G).
Recall that ¢(G) = mingcy max {¢(S), #(S)}. We let S be the set of vertices achieving the minimum, namely
#(S) = ¢(G). Let 15 € R" be the vector that
1, ieS
15(i) = {

0, i¢S.

Define 15 similarly. We let X be the space span(D? 15, D2 15) where D £ diag(deg(1), deg(2), ..., deg(n)). Then
every x € X can be written as x = aD3? 1s + bD3> 15 for some a, b € R. First note that

_ (D715,ND315)  (15,L15)

1 1
Ryx(aDz1g) = Ry(D21g) = =
<D%15,D%15> (15, D15)

$(S),

and similarly
1 _
Ry(bD215) = $(S) < ¢(S).
If one of a or b is zero, the inequality obviously follows. Therefore, as long as we can show for every a, b # 0, it holds
taht
Rn(x) = Ry(aD? 15 + bD215) < Ry(aD?15) + Ry (bD? 15),

the inequality is proved.

In fact, we prove the following stronger statement: For every symmetric M, every pair of nonzero vectors x,y

such that (x,y) = 0, it holds that Ry (x +y) < 2 - max {Ry (x), Ru(y)}.
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Consider the spectral decompositions of the two vectors x = ). ; a;v; andy = >, b;v;. We have
(Zici(ai + bi)vi, M(EIZ, (i + bi)vi))
Ru(x+y) = =% n
(it (ai + bi)vi, Xiq (@i + bi)vi)
_ 2?:1 Ai(ai + bi)2

Zizi(ai +bi)?

im1 Ai2(a} +b7)

im1 @ + iy b
T e X Aib?}

n 2’ n 2
i=19%; iz1b;

NG

IN®

2~max:

= 2-max {Ry(x), Ru(y)} .

In the above calculation, the denominator of () is due to x 1 y and the numerator follows from (a+5)? < 2(a%+b?);

(@) is due to the inequality Ziig; < max;—1,2 % for nonnegative a; and b;.
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2. ProoF or THE UPPER BOUND

The proof of the upper bound ¢(G) < V22, is more involved. The proof we are going to introduce today is in fact
an analysis of the following approximation algorithm for edge expansion ¢(G).

FIEDLER’S ALGORITHM
Input: A graph G = (V,E) and a vector x € R".
1. Number the vertex set V.= {v1,...,v,} according toy =
D 2xso that y(i) < y(i+ 1) foreveryi=1,...,n— 1.
2. Foreveryi=1,2,..., L%J, define S; = {1,2,...,i}.
3. Return min; ¢;<| 2 $(S;).

The performance of Fiedler’s algorithm depends on the input vector x. We now prove

Theorem 1. Foreveryx L D21, Fiedler’s algorithm finds a set S such that

#(S) < /2Ry (x).

Then Cheeger’s inequality follows by taking x to va.

Now we start to prove Theorem 1. Let x L D31 be a vector. Fiedler’s algorithm defines n sets Sy,...,S, and
returns the one with minimum expansion. We now use probabilistic method to show that one of S; has expansion
at most /2Ry (x).

We already know from the last lecture that if we let y = D~ 2x, then Ry (x) = %. Moreover, x L D21 if and

)
only if y L D1. Assume without loss of generality that y(1) < y(2) < --- < y(n). Let € be the smallest index such

that
Z deg(vy) = Z deg(vy).

k<t k>¢

We shift the vector y by letting y’ = y — y(j)1. It is not hard to see that g,,[L)};,; < 8’ ?}")), since shifting in the
direction of 1 does not change the numerator but increasing the denominator due to y L D1 (this can be verified
by considering (y + z1, D(y + z1)) as a function on z and looking at its derivative). Moreover, if for every t € R,
we let S, = {vi Dy'(i) < t}, then every S; is among the separators considered by Fiedler’s algorithm with input
x. Therefore, we can sample separators considered by Fiedler’s algorithm by sampling a number ¢ in R. To define
a suitable distribution on R, we can further assume y’(1)? + y’(n)? = 1 without loss of generality. Then we can
sample ¢ in [y’(1),y’(n)] with probability density f(¢) = 2 |¢| (Figure 1).
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FIGURE 1. The probability desnity f(¢) = 2 |t].

Everything is going to be in a very nice form with this mysterious distribution. Recall that

$(G) = minmax {(5). $(5)} = min [£(S. 9) |
scv SCV min {Zies deg(i), Xies deg(i)}

we have

E[|ES,S)] = ), Prlies,jes)]

{i,j}€E
i<j

()
— Z /yii; f(t) dt

{i,j}€E

i<j
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where (D) uses Cauchy-Schwartz and ) is due to the inequality (a + b)? < 2(a® + b?). Also by the definition of y’,
it holds that

min Zdeg Zdeg =Pr[t<0]- Zdeg

+Pr(t>0]-E| ) deg(i) | t>0

ieS; ieS; i€S; ieS;
—Zdeg ‘Pr[t <0,i€S,] +Zdeg )-Pr[t>0,i€S,]
ieV ieV
= Z deg(i) -Pr[y’(i) <t < 0] + Z deg(i) -Pr[0 <t <y'(i)]
i<t i>
= > deg(i) - y'(i)* = (¥, Dy")
iev

Therefore, putting above together yields

E [|E(St,§t)|] < v2<Y"DY'> : \/Z{i,j}eE (Y’(]) _y’(i))Q _ \/2<y’,Ly’> < \/2<y,Ly> B

E [min {¥;cs, deg(i), Xies, deg(i)}] ~ (y’, Dy’) (y’,Dy’) = \ (y,Dy)

2RN(X).

It remains to verify that for two random variables X > O and Y > 0, lé[[};]} < r implies Pr [ < r] > (. To see this,
notice that
E [X] X
E—Y]Sr = E[X-rY]<0 = Pr[X-rY<0]>0 = Pr v =T > 0.

3. REMARK

In the class I proved Cheeger’s inequality for regular graphs. Please carefully read the proof for general graphs
here. The proofs are adapted from two wonderful lecture notes [Spil5, Tre16].
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