ADVANCED ALGORITHMS (V)

CHIHAO ZHANG

1. Basics SPECTRAL TooLs

Today we start to introduce spectral algorithms. The theory uses eigenvalues and eigenvectors of adjacency ma-
trices to study combinatorial proeprties of graphs.
Recall that we have the spectral decomposition theorem, which is the main tool we are going to use today.

Theorem 1 (Spectral Decomposition Theorem). An n X n symmetric matrix A has n real eigenvalues A1, . .., A, with
corresponding eigenvectors vi, . .., v, which are orthonomal. Moreover, it holds that

A=VAVT,
where V = [V1 Vo ... Vn] and A = diag(Ay,...,A,).

Given a graph G = (V,E) with V. = {01, v9,...,v,}, the basic object we study is its adjacency matrix A =
(@ij)1<; j<n- To ease the notation, we shift A to a positive semi-definite matrix. Let

L=D-A
be the Laplacian of G where D = diag (deg(v1), deg(vs), . . ., deg(vy)).
Proposition 2. For very x € R", it holds that

xIx= Y (x(i)-x(})*.
{i,j}eE

Proof. Direct calculation shows that both sides are equal to 3;cy deg(i) - x(i)? — 2 X ; jyeg x(i)x()). ]

Therefore, L > 0 and all of its eigenvalues are nonnegative.
Sometimes it is more convenient to work with normalized Laplacian, which is defined to be

N2D LD 3 =[-D :AD .

When G is d-regular, we have N = — %A.
The Rayleigh Quotient of a vector x € R" with respect to a matrix M is
(x, Mx)
R = .
v =

Note that for the normalizaed Laplacian N of some graph, it holds that
(x,(D"3LD"%)x) (D3x,LD3x)  (y.ly)
1 Ry(x) = R a— ’
(x, %) (D~zx,DD 2x)  (y.Dy)

where y £ D zx.
The following variational characterization of the eigenvalues is our center tool in the development of the theory.

Theorem 3. Let M ba a symmetrix matrix with real eigenvalues A\; < Ay < --- < A,.Then foreveryk =1,...,n,

Ak = min max Ry (x).
k-dim subspace X CR™ xeX\ {0}
Proof. Letvy,...,v, be aset of orthonormal eigenvectors corresponding to 41, ..., A, respectively.
We first prove

min max Ry (x) < Ag.
k-dim subspace X CR"™ xeX\{0}
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To this end, we only need to construct a k-dimensional space X such that every nonzero vector x € X \ {0} satisfies
Ry (x) < Ag. Let X = span(vy,Vva,. .., Vi), then for every x = Zlf:l a;v; € X \ {0}, we have
kv ko av
Ru(x) = (Zizr avi M (Zizl alvl)> _ (X1 avi, B8 hiagvi) _ i ia? <
(Ch v, 2 aivi) (XE ) aivi, 25 aivi) iy a2

We then prove the other direction, i.e.,

min max Rpy(x) > Ag.
k-dim subspace X CR"™ xe X\ {0}

It is sufficient to show that, for every k-dimensional subspace X C R¥, there exists some x € X \ {0} satisfying
Ry (x) = Ag. Let us fix such a k-dimensional subspace, and let x be an arbitrary nonzero vector in

X Nspan(vg,...,Vy).

Such a vector x must exist since the sum of the dimensions of the two spaces is n + 1. Assuming x = » , b;v;,
then
(L bivi, M (X1 bivi)) g bivi, X ibivi) X7 L Aib?

R = = _
M) = e e S b (X bve S bve) lkb?

> Agk.

An immediate corollary of above is

Corollary 4.

A= min Ru(x), An= Ru(x).
1= ming, Ru(). A= max Ru(x)

Besides, we can similarly use the spectral decomposition of vectors to prove another useful characterization of
eigenvectors:
Theorem 5. Let vy,...,Vv, be a set of orthonormal (with respect to (-,-)) eigenvectors corresponding to Ay, ..., A,
respectively. Then for everyk = 1,...,n,

A = min Ry (x).
xLspan(vy,...,Vi_1)

The following proposition sheds some light on the relation between eigenvalues and the structure of the graph.

Proposition 6. Let G = (V, E) be an undirected graph and N be its normalized Laplacian. Assuming Ay < Ao < -+ <
An are its eigenvalues, then

1) 4 =0;

(2) Ay <2 and A, = 2 if and only if one of components of G is bipartite;

(3) Ak = 0 if and only if G has at least k components.

Proof. 1t follows from (1) and Corollary (4) that
2
mi (Y, Ly) _ min Zijree (Wi —y5)
Y40 (y,Dy) ¥4 3y deg(i) 2
where the second equality is because the mapping x — D ix =: y is linear and bijective. The equality is achieved

when y = 1. This proves (1).
Similarly, we have

A= I}I{l;(I)IRN(X) =

{y,Ly) . Z{i,j}eE(yi+yj)2
=2 —min

An, = max Ry (x) = max -
n = max R () y#0 (y,Dy) y20  Niey deg(i) - y7
To achieve the equality, we need y; = —y; whenever {i, j} € E. It is not hard to verify that, such a nonzero y exists

if and only if one of components of G is bipartite.
To show (3), we use

Siayer Wi = y)*
A = min max Ry (x) = min y Stbsiel 12 .
k-dim subspace X CR"” x€X k-dim subspace Y CR" ye€Y ZIEV deg( )
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First assume A = 0, then we know for some k-dim subspace Y, every vector y € Y satisfies y; = y; whenever {i, j} €
E. This implies that for every y € Y, y; = y; whenever i and j are in the same component. Let C denote the set of

1, ieC;
components and for every C € C, we use 1¢ to denote the vector such that 1¢ (i) = 0 l e Then span({1c}cec)
, i
must contain the whole space Y and therefore |C| > k. Conversely, if |C| > k, the space span({1c}cec) Witnesses
A = 0. ]

2. EDGE EXPANSION AND CHEEGER’S INEQUALITY

We want to obtain some quantitative version of Proposition 6. To this end, we introduce the notion of edge
expansion to measure the connectivity of a graph.
Let G = (V,E) be a graph, for every S C V, we define

o15) - oI
Zies deg(i) ’
where E(S,S) is the set of edges crossing S and S. In the following, we assume the graph is d-regular, then ¢(5)

becomes to Ec(if:sf)' It is clear that the quantity is in fact the fraction of edges going out of S among those edges

incident to S. The (edge) expansion of the graph G is the minimum of ¢(S), over all S C V with S| < 3:

4(C) = min _§(s).

v
scv,|s|<¥

The edge expansion is an important object that appears in many areas of computer science. For example, we will
show in later lectures that it is closely related to the random walk on the graph. Today, we will introduce an imporatnt
result that relating ¢(G) with eigenvalues of the normalized Laplacian.

Theorem 7 (Cheeger’s Inequality). Let0 = Ay < Ay < --- < A, be the eigenvalues of the normalized Laplacian of G,

then ,
32 < ¢(G) < V24s.
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