
ADVANCED ALGORITHMS (IV)

CHIHAO ZHANG

1. Goemans and Williamson Rounding of MaxCut

We already meet the problem of MaxCut last time and has been convinced that the integrality gap of an LP
relaxation of the problem can be 2 − ε for any ε > 0.

MaxCut
Input: An undirected graph G = (V ,E).

Problem: Compute a set S ⊆ V that maximizes
��E(S, S̄)��.

In fact, it is more natural to model the problem as a quadratic programming:

max 1

2

∑
e={u,v }∈E

(1 − xuxv )

s.t. xu ∈ {−1, 1} , ∀u ∈ V .

If we view each number xu as a one-dimonsional vector xu ∈ R1, and relax it to a n-dimensional vector wu ∈ Rn ,
the following vector proramming is obtained:

max 1

2

∑
e={u,v }∈E

(
1 −wT

uwv

)
s.t. wu ∈ Rn , ∀u ∈ V ;

wT
uwu = 1, ∀u ∈ V .

We can therefore solve this vector program by transforming it to an equivalent SDP. Let
{
w∗
u
}
u ∈V be an optimal

solution of the vector program, we now need to round it to a cut, or equivalent a partition (S, S̄) of the vertex set V .
Intuitively, if the angle between two vectors w∗

u and w∗
v is large, we prefer to cut u and v . The Goemans and

Williamson rounding randomly samples a hyperplane crossing the orgin, and therefore separates the vectors into
two sets: those on one side of the hyperplane and those on the other side. Therefore, those pairs of vectors with
large angle between them are more likely to be separated.

In order to implement this idea, we need to know how to uniformly sample a hyperplane crossing the origin. We
achieve this by uniformly sample a point in the n − 1-sphere Sn−1 = {x ∈ Rn : ∥x ∥ = 1} to serve as the normal of
the plane. We sample a vector r = (r1, . . . , rn)where each ri ∼ N(0, 1) follows the Gaussian distribution with mean
0 and variance 1 independently.

Lemma 1. r
∥r ∥ is a point in S

n−1 uniformly at random.

Proof. Consider the probability density function of r. For every r = (r1, . . . , rn), since each ri is an independent
N(0, 1), we have

p(r1, . . . , rn) =
n∏

i=1

1
√
2π

exp
(
−
r2i
2

)
= (2π)−

n
2 exp

(
−
∑n

i=1 r
2
i

2

)
= (2π)−

n
2 exp

(
− ∥r∥2

2

)
.

The density only depends on the norm of r, therefore, after normalization, r
∥r ∥ is uniform in Sn−1. □

The rounding algorithm is
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Goemans-Williamson Rounding

1. Compute
{
w∗
u
}
u ∈V .

2. Choose a point r = (r1, . . . , rn) ∈ Sn−1 uniformly at random.
3. Let S ≜

{
u ∈ V : rTw∗

u ≥ 0
}
.

Theorem 2. Goemans-Williamson rounding is a randomized α∗-approximation of MaxCut with α∗ > 0.878.

Proof. We use θu,v denote the angle between vectorsw∗
u andw∗

v , namely θu,v = arccosw∗
u
Tw∗

v . Since the separating
hyperplane is uniformly chosen , for every edge e = {u,v} ∈ E, the probability that that u and v are separated (lie
on two sides of the hyperplane respectively ) is θ

π . Therefore, if we let X denote the size of the cut obtained, we have

(1) E [X ] =
∑

{u,v }∈E
Pr [u and v are separated] =

∑
{u,v }∈E

arccosw∗
u
Tw∗

v

π
.

If we let
α∗ = min

−1≤x ≤1
2 arccosx
π(1 − x)

> 0.878,

(1) becomes to

E [X ] ≥ α∗

2

∑
{u,v }∈E

(1 −w∗
u
Tw∗

v ) = α∗ · OPT(VP) ≥ α∗ ·MaxCut(G).

□

2. Quadratic Programming

It is nature to ask whether one can apply Goemans-Williamson rounding to approximate any quadratic programs.
In binary quadratic programs, each variable takes value −1 or +1:

max
∑

1≤i, j≤n
ai, jxix j (P1)

s.t. xi ∈ {−1,+1} , i = 1, . . . ,n.

In this lecture, we only consider the case that the optimal value of the quadrtic program is nonnegative, so that
the approximation ratio is well-defined. Therefore, we assume that the coefficient matrix A = (ai, j)1≤i, j≤n ⪰ 0.
See [WS11, Chapter 13] for a more general treatment.

We can directly apply the Goemans-Williamson relaxation and rounding to quadrtic programs. We relax (P1) to
the following vector program:

max
∑

1≤i, j≤n
ai, jvTi vj

s.t. vi ∈ Rn , ∀i = 1, . . . ,n;

vTi vi = 1, ∀i = 1, . . . ,n.

Then apply the following rounding procedure

Goemans-Williamson for Quadratic Programming

1. Compute
{
v∗i
}
1≤i≤n .

2. Pick a vector r in Sn−1 uniformly at random.
3. x̂i = 1 if v∗i

T r ≥ 0; x̂i = −1 otherwise.

For every i, j ∈ [n], it holds that

E [x̂i x̂ j ] = (1 − Pr [x̂i , x̂ j ]) − Pr [x̂i , x̂ j ] = 1 − 2Pr [x̂i , x̂ j ] .
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It follows from our argument for MaxCut that the probability of x̂i , x̂ j , or equivalently the probability of v∗i and

v∗j being separated by the random hyperplane, is arccos v∗Ti v∗j
π . Therefore, we have

E [x̂i x̂ j ] = 1 − 2

π
arccos v∗Ti v∗j =

2

π
arcsin v∗i

T v∗j ,

where in the last equality we used the identity arcsin(x) + arccos(x) = π
2 .

In order to establish a bound for the approximation ratio, we would like to find some α∗ so that

(2)
∑

1≤i, j≤n
ai, jE [x̂i x̂ j ] =

∑
1≤i, j≤n

ai, j ·
2

π
arcsin v∗i

T v∗j ≥ α∗ ·
∑

1≤i, j≤n
ai, jv∗T v∗j

holds. Unlike the MaxCut case, it is not enough to simply prove

2

π
arcsinx ≥ α∗ · x

holds for every −1 ≤ x ≤ 1, since ai, j might be negative. We shall apply a global argument.
Let xi, j denote v∗i

T vj , then it follows from (2) that we want to establish∑
1≤i, j≤n

ai, j ·
(
2

π
arcsinxi, j − α∗xi, j

)
≥ 0

holds for some α∗.
We prove this forα∗ = 2

π . Recall thatA = (ai, j)1≤i, j≤n is a positive semi-definitematrix and letZ = (arcsinxi, j − xi, j)1≤i, j≤n
be another n × n matrix. We show the Frobenius inner product of A and Z is nonnegative, namely

A • Z ≥ 0.

For every two n × n matrices A = (ai, j)1≤i, j≤n and B = (bi, j)1≤i, j≤n , their Hadamard product C = A ◦ B is a matrix
C = (ci, j)1≤i, j≤n with ci, j = ai, j · bi, j . Therefore, if we can show A ◦ Z ⪰ 0, then it follows that

A • Z = 1TA ◦ Z1 ≥ 0,

where 1 is the all-one vector.
We make use of the following theorem.

Theorem 3 (Schur product theorem). If A,B ⪰ 0, then A ◦ B ⪰ 0.

Proof. We show for every x ∈ Rn , xTA ◦ Bx ≥ 0. By definition,

xTA ◦ Bx =
∑
i, j

xiai, jbi, jx j = (diag(x) · A) • (B · diag(x)) ,

where diag(x) is a diagonal matrix whose ith entry on the diagonal is xi . Recall that for a matrix A = (ai, j)1≤i, j≤n ,
its trace, denoted by Tr(A), is defined to be the sum of its diagonal entries, i.e.,

Tr(A) ≜
n∑

i=1

ai,i .

It is not hard to verify by definition that for any two matrices A and B, it holds that A • B = Tr(ABT ). Therefore, we
have

(diag(x) · A) • (B · diag(x)) = Tr (diag(x) · A · diag(x) · B)

SinceA ⪰ 0, letΛ = diag(λ1, . . . , λn) be the diagonal matrix consisting of its eigenvalues, the spectral decomposition
theorem says that we can write

A = SΛS−1
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for some matrix S . Let
√
A ≜ S

√
ΛS−1 where

√
Λ ≜ diag(

√
λ1, . . . ,

√
λn), then obviously we have A =

√
A ·

√
A.

Defining
√
B similarly, we can continue to write

xTA ◦ Bx = Tr
(
diag(x) ·

√
A ·

√
A · diag(x) ·

√
B ·

√
B
)

1⃝
= Tr

(√
A · diag(x) ·

√
B ·

√
B · diag(x) ·

√
A
)

= Tr
((√

A · diag(x) ·
√
B
)
·
(√

A · diag(x) ·
√
B
)T )

2⃝
≥ 0,

where 1⃝ is due to the cyclic permutation invariance property of the trace operator, and 2⃝ follows from the easy-
verified identity Tr(MMT ) ≥ 0 for anyM . □

Given Schur product theorem, we only need to verify that Z ⪰ 0. The taylor series of the function arcsinx is

arcsinx = x +
∑
n≥1

∏n+1
i=1 (2i − 1)∏n

i=1 2i

x2n+1

2n + 1
.

Therefore, if we let X = (xi, j)1≤i, j≤n , it holds that

Z =
∑∑

n≥1

∏n+1
i=1 (2i − 1)∏n

i=1 2i

X (2n+1)

2n + 1
,

where X (k) ≜ X ◦ X ◦ · · · ◦ X︸             ︷︷             ︸
k consecutive ◦

. Then Z ⪰ 0 follows from Schur product theorem and the fact that the sum of positive

semi-definite matrices is positive semi-definite. So we can conclude with the following theorem.

Theorem 4. Goemans-Williamson rounding is a randomized 2
π -approximation of binary quadratic programming when

the coefficient matrix is positive semi-definite.

Remark. We can add arbitrary quadratic constriants to (P1). The approximation ratio of Goemans-Williamson is
at least as good as the non-constraint case, since the same analysis applies (and we may have chance to improve it
under some contraints).

3. Correlation Clustering

The last problem today is called “Correlation Clustering”. Given a undirected graph G = (V ,E) in which each
edge e ∈ E has two nonnegative weightsw+

e ,w
−
e ≥ 0.The problem is to find a parition S = (S1, . . . , Sk ) (clustering)

of V such that ∑
e ∈E+(S)

w+
e +

∑
e ∈E−(S)

w−
e

is maximized, where E+(S) (resp. E−(S)) consists of edges whose two ends are in the same (resp. different) Si .
To relax the problem, we first formalize it into a vector program. Let n = |V |. For every i ∈ [n], we use ei to

denote the i-th unit vector, i.e., the vector whose i-th entry is one and all other entries are zero. Then the correlation
clustering problem is equivalent to

max
∑

{u,v }∈E

(
w+
u,v (xTuxv ) +w−

u,v (1 − xTuxv )
)

s.t. xu ∈ {e1, . . . , en} , ∀u ∈ V .
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We relax the domain of xu to unit vectors in Rn :

max
∑

{u,v }∈E

(
w+
u,v (xTuxv ) +w−

u,v (1 − xTuxv )
)

s.t. xTvxv = 1, ∀v ∈ V ;

xTuxv ≥ 0, ∀u,v ∈ V ;

xu ∈ Rn , ∀u ∈ V .

Note that we have additional constraints of the form xTuxv ≥ 0. We can safely add these constraints since they are
obviously satisfied by xu ∈ {ei }i ∈[n]. They are useful in our analysis since we only need to argue in the domain
where these constraints are satisfied.

We shall obtain a 0.75-approximation by using at most four clusters. The four clusters are formed by using two
random hyperplanes crossing the origin, in the Goemans-Williamson manner.

Correlation Clustering
1. Compute

{
x∗u

}
u ∈V .

2. Pick two vectors r1 and r2 in Sn−1 uniformly at random.
3. We let

– R1 =
{
u ∈ V : (x∗u)T r1 ≥ 0 and (x∗u)T r2 ≥ 0

}
,

– R2 =
{
u ∈ V : (x∗u)T r1 ≥ 0 and (x∗u)T r2 < 0

}
,

– R3 =
{
u ∈ V : (x∗u)T r1 < 0 and (x∗u)T r2 ≥ 0

}
,

– R4 =
{
u ∈ V : (x∗u)T r1 < 0 and (x∗u)T r2 < 0

}
.

Then for every {u,v} ∈ E, if we use qu,v to denote the probability that x∗u and x∗v are on the same side of both
hyperplanes, the expected cost of our rounding algorithm is∑

{u,v }∈E
w+
u,vqu,v +w−

u,v (1 − qu,v ).

Moreover,

qu,v =

(
1 − arccosx∗uT x∗v

π

)2
.

So if we let

α1 = min
0≤z≤1

(
1 − arccos z

π

)2/
z , α2 = min

0≤z≤1

(
1 −

(
1 − arccos z

π

)2)/
(1 − z) ,

and α∗ = min {α1,α2} = 0.75, it holds that the expected cost of our rounding algorithm is at least

α∗ ·
∑

{u,v }∈E

(
w+
u,v (x∗u

T xv ) +w−
u,v (1 − x∗u

T x∗v )
)
≥ α∗ · OPT.

4. Remark

The presentation of this lecture mainly follows [WS11, Chapter 6].
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