
ADVANCED ALGORITHMS (III)

CHIHAO ZHANG

1. MaxCut

Today we consider the problem of MaxCut, which is very similar to Max2SAT we met last week. The problem
is formally defined as

MaxCut
Input: An undirected graph G = (V ,E).

Problem: Compute a set S ⊆ V that maximizes
��E(S, S̄)��.

Here, for every set of vertices S ⊆ V , the set E(S, S̄) is the set of edges with one end in S and the other in S̄ . These
edges form a cut since their removal disconnects S and S̄ . Sometimes we may have nonnegative edge weightwe on
each edge e ∈ E, and the problem becomes to finding a set S so that

∑
e ∈E(S, S̄)we is maximized. In this lecture, we

only focus on the unweighted case, namelywe = 1 for every e ∈ E. It is not hard to generalize all algorithms we are
going to introduce today to the weighted case.

If we consider each vertex v ∈ V as a variable and each edge as a constraint, then the problem is quite similar to
MaxSAT, except that the constraint here is XOR instead of OR. So we can construct S by tossing an independent
fair coin on each vertex: if the coin on a vertex v goes HEAD, we put v into S ; otherwise we put v into S̄ . It is clear
that the expectation of this randomized algorithm is a 1

2 -approximation of MaxCut, and we can derandomize the
algorithm using conditional expectation method in the usual way.

Like the case of MaxSAT, we want to improve the approximation ratio of this simple algorithm by tossing clever
coins. Following the strategy we used for MaxSAT, we desgin a linear programming relaxation of the problem.

To desgin a LP relaxation, it is natural to introduce a variable xv ∈ {0, 1} for every v ∈ V to indicate whether v
is in S . Similarly, we introduce variables yu,v ,yv,u ∈ {0, 1} for every {u,v} ∈ E to indicate whether the edge {u,v}
is in the cut.

The cost function is of course
∑

{u,v }∈E yu,v . However, it is not very straightforward to write linear constraints for
being a cut. We make use of the following observation: For every S ⊆ V , the tuple (S, S̄,E(S, S̄))must be an induced
bipartite subgraph ofG. Therefore, we try to use linear constraints to characterize those induced bipartite subgraphs.
To implement this idea, we need to extend our definition of variables yu,v to every pair of vertices u,v ∈ V (not only
for those edges in E). The integer programming

max
∑

{u,v }∈E
yu,v

s.t. yu,v ≤ yu,w + yw,v , ∀u,v,w ∈ V (P1)(1) ∑
{u,v }∈C

yu,v ≤ |C | − 1, ∀odd cycle C(2)

yu,v = yv,u , ∀u,v ∈ V

yu,v ∈ {0, 1} , ∀u,v ∈ V .

is equivalent to MaxCut. Here, (1) is used to rule out the case that yu,v = 1,yu,w = yv,w = 0 for any u,v,w ∈
V , which is not allowed in a bipartition; (2) is to guarantee that there is no odd cycle. In fact, (2) may involve
exponentially many constraints, since we need to consider every odd cycle inG. Nowwe claim that these constraints

1

can be replaced by (2’), which involves at most polynomially many constraints.

max
∑

{u,v }∈E
yu,v

s.t. yu,v ≤ yu,w + yw,v , ∀u,v,w ∈ V (P2)
yu,v + yu,w + yw,v ≤ 2, ∀u,v,w ∈ V(2’)
yu,v = yv,u , ∀u,v ∈ V

yu,v ∈ {0, 1} , ∀u,v ∈ V .

We leave as an exercise to verify that (P1) and (P2) are equivalent. Hence by relaxing yu,v ∈ {0, 1} to yu,v ∈ [0, 1],
we obtain the following LP:

max
∑

{u,v }∈E
yu,v

s.t. yu,v ≤ yu,w + yw,v , ∀u,v,w ∈ V (P3)
yu,v + yu,w + yw,v ≤ 2, ∀u,v,w ∈ V

yu,v = yv,u , ∀u,v ∈ V

yu,v ∈ [0, 1], ∀u,v ∈ V .

2. Integrality Gap of MaxCut LP

Can we obtain a better approximation algorithm by rounding (P3)? The answer is probably no, since the LP
relaxation has large integrality gap. In this section, we show that the integrality gap of (P3) can be arbitrarily close
to 2.

Theorem 1. For any ε > 0, there exists a graph G satisfying

LP(G)
MaxCut(G) ≥ 2 − ε,

where LP(G) is the optimal cost of (P3) on G.

Our proof heavily rely on the Chernoff bound. We choose to use the following simple (but loose) form of multi-
plicative Chernoff bound.

Proposition 2. Let X be the sum of n independent Bernoulli trials with success probability p and µ = pn be the
expectation of X . Then

Pr [X ≤ (1 − δ)µ] ≤ exp
(
−δ

2µ

2

)
, ∀0 ≤ δ ≤ 1

Pr [X ≥ (1 + δ)µ] ≤ exp
(
− δ2µ

2 + δ

)
, ∀δ ≥ 0

We prove Theorem 1 by the probabilistic method, i.e., instead of directly constructing an instance, we only prove
its existence. An Erdős-Rényi random graphG ∼ G(n,p) is a random n vertices graph in which every edge is present
with probability p independently.

Assume G = (V ,E) ∼ G(n,p) for some parameter p to be set. We first upper bound the probability that
MaxCut(G) is at least (1 + δ) · pn2

4 for some δ ≥ 0. For a fix partition (S, S̄) of V , the number of pairs of ver-
tices in S × S̄ is at most n2

4 , and each of which has probability p to be in E. We let X = Bin
(
n2

4 ,p
)
1, then E [X] =

pn2

4 .
Therefore, it follows from Proposition 2 that

Pr
[��E(S, S̄)�� ≥ (1 + δ) · pn

2

4

]
≤ Pr [X ≥ (1 + δ) · E [X]] ≤ exp

(
− δ2pn2

4(2 + δ)

)
.

1Bin (n, p) is the binomial distribution.
2

There are at most 2n partitions of V , so by the union bound, we have

Pr
[
MaxCut(G) ≥ (1 + δ) · pn

2

4

]
≤ 2n · exp

(
− δ2pn2

4(2 + δ)

)
.

We then turn to bound the probability that a graph G = (V ,E) ∼ G(n,p) has small number of edges. Note that
E [|E |] = p

(n
2

)
, so again by Proposition 2 we have for every δ ′ ≥ 0 and sufficiently large n,

Pr
[
|E | ≤ (1 − δ ′) · pn

2

2

]
≈ Pr [|E | ≤ (1 − δ ′) · E [|E |]] ≤ exp

(
−δ

′2pn(n − 1)

4

)
.

Given these bounds, it is not hard to conclude with the following lemma:

Lemma 3. Assume n is sufficiently large. If the parameters δ ,δ ′ and p satisfy δ2p,δ ′2p ≥ C
n for sufficiently large

constant C , then with probability 1 − o(1), G is a graph satisfying MaxCut(G) ≤ 1+δ
1−δ ′ · |E |

2 .

Keeping in mind that we need MaxCut(G) ≤ (1+o(1)) · |E |2 , so we have to choose parameters so that δ ,δ ′ = o(1)

and p = ω
(
1
n

)
.

It remains to show that, for suitable p, a graph G ∼ G(n,p) has large LP(G) with high probability. We are going
to construct a solution of (P1). Imagine that we construct the solution by setting yu,v = yv,u = k−1

k for every edge
{u,v} ∈ E. It is easy to see that, in order for this solution to be feasible, we do not allow the graph containing short
odd cycles. To fix this, we can modify yu,v to zero for those edge {u,v} on short cycles. This modification decreases
the cost of the LP solution

∑
yu,v . Therefore, as long as we can show that there are not too many such edges, the

cost of this feasible LP solution is close to |E |. So we turn to bound the number of edges on short cycles in G(n,p).

Lemma 4. Let p =
logn
n , a graph G = (V ,E) ∼ G(n,p) saitsfies LP(G) = (1 − o(1)) |E | with probaiblity 1 − o(1).

Proof. Let X be the random variable indicating the number of edges on simple cycles of length less than k . We first
compute the expectation of X . By the linearity of expectation, we have

E [X] ≤
k∑

i=3

i ·
(
n

i

)
i!

2i
pi ≤ (pn)k .

We let k =
logn

log logn and denote α = n (logn)
1
2 . Then by Markov inequality,

Pr [X ≥ α] = Pr
[
X ≥ (logn)

1
2 · (pn)k

]
≤ 1

(logn)
1
2

= o(1).

In other words, with probaility 1 − o(1), the number of edges on simple cycles of length less than k is at most
n (logn)

1
2 . By Chernoff bound, we have α = o(|E |) with probability 1 − o(1). This implies

LP(G) =
∑

{u,v }∈E
yu,v = (1 − o(1))

k − 1

k
|E | = (1 − o(1)) |E |

with probability 1 − o(1). □

Therefore, Theorem 1 follows from Lemma 3 and Lemma 4 by choosing δ ,δ ′ =
(

C
logn

) 1
2 and p =

logn
n where C is

a sufficiently large constant.

3. Positive Semi-Definite Matrix

We need to review some concepts in linear algebra before introducing our next algorithm for MaxCut.

Definition 5. We call an n × n symmetric matrix A positive semi-definite if xTAx ≥ 0 holds for every vector x ∈ Rn
and denote it by A ⪰ 0.

If we replace the “≥” condition xTAx ≥ 0 above by >, ≤ and < respectively, we obtain “positive definite” (A ≻ 0),
“negative semi-definite” (A ⪯ 0) and “negative definite” (A ≺ 0) matrix A respectively.

There are a few equivalent characterizations of the positive semi-definite matrices.

Proposition 6. For an n × n symmetric matrix, the followings are equivalent.
3

(1) A ⪰ 0;
(2) A has n non-negative eigenvalues;
(3) A = UTU for some n × n matrixU =

[
u1 u2 . . . un

]
.

To verify Proposition 6, we make use of the spectral decomposition theorem.

Theorem 7 (Spectral Decomposition Theorem). An n × n symmetric matrix has n real eigenvalues λ1, . . . , λn with
corresponding eigenvectors v1, . . . , vn which are orthonomal. Moreover, it holds that

A = VΛVT ,

where V =
[
v1 v2 . . . vn

]
and Λ = diag(λ1, . . . , λn).

Proof of Proposition 6. “(1) =⇒ (2)”: We know fromTheorem 7 that all eigenvalues ofA are real. Assume for the sake
of contradiction that some eigenvalue λj is negative and consider its corresponding eigenvector vj . We have

vTj Avj = λjv
T
j vj = λj ∥vj ∥22 < 0.

This is a contradiction with A ⪰ 0.
“(2) =⇒ (3)”: Since all λi are non-negative, we can define a matrix

√
Λ ≜ diag(

√
λ1, . . . ,

√
λn). Then again by

Theorem 7, we have

A = VΛVT = V
√
Λ ·

√
ΛVT =

(√
ΛVT

)T
·
√
ΛVT .

So we can letU ≜
√
ΛVT .

“(3) =⇒ (1)”: For every x ∈ Rn , we have

xTAx = xTUTUx = ∥Ux ∥22 ≥ 0.

□

4. Positive Semi-Definite Programming

The main tool we are going to develop in this section is positive semi-definite programming (SDP). We treat PSD
as a generalization of LP. For example, consider the LP

max 2x − 3y

s.t. x + y ≤ 2

3x − y ≤ 1

x ≥ 0

y ≥ 0

We can rewrite it in an equivalent matrix form

max
[
2 0
0 −3

]
•
[
x 0
0 y

]
s.t.

[
1 0
0 1

]
•
[
x 0
0 y

]
≤ 2[

3 0
0 −1

]
•
[
x 0
0 y

]
≤ 1[

x 0
0 y

]
⪰ 0

where for twon×nmatricesA = (ai, j)1≤i, j≤n and B = (bi, j)1≤i, j≤n , the Frobenius inner product ofA•B is defined to
beA•B ≜ ∑

1≤i, j≤n ai, j ·bi, j . Here, every matrix appeared is diagonal and we have an additional positive semi-definite
constraint X ⪰ 0.

As shown in above example, every linear program in standard form can be written in the matrix form in which
the variables {xi }i ∈n of the LP are collected in a matrixX = diag(x1, . . . ,xn). The positive semi-definite programming

4

generalizes the diagonal matrix X to arbitrary symmetric matrix:
max C • X
s.t. Ak • X ≤ bk , ∀k ∈ [m] (P4)

X ⪰ 0

Here C = (c(i, j))1≤i, j≤n , X = (x(i, j))1≤i, j≤n and Ak = (ak (i, j))1≤i, j≤n for k ∈ [m] are n × n matrices.
Sometimes it is convenient to apply (3) of Proposition 6 to get rid of the positive semi-definiteness constraint.

Since we require X to be positive semi-definite, there exists a matrixU =
[
u1, . . . ,un

]
such that X = UTU . We can

rewrite (P4) as the following vector program.

max
∑
1≤i, j

c(i, j) · uTi uj

s.t.
∑

1≤i, j≤n
ak (i, j) · uTi uj ≤ bk , ∀k ∈ [m]

ui ∈ Rn , i ∈ [n]

Like LP, we can (approximately) solve SDP (and thus its equivalent vector program) in polynomial-time via ellip-
soid method provided an efficient separation oracle.

5. Remark

The 2− ε integrality gap of MaxCut LP is folklore. The proofs in Section 2 are adapted from [PT94] and [VNT93].
See [Fre04] for a gentle introduction of SDP.

References
[Fre04] Robert M Freund. Introduction to semidefinite programming (sdp). OCW, Massachusetts Institute of Technology, page 10, 2004. Available

at https://ocw.mit.edu/courses/sloan-school-of-management/15-084j-nonlinear-programming-spring-2004/
lecture-notes/lec23_semidef_opt.pdf. 5

[PT94] Svatopluk Poljak and Zsolt Tuza. The expected relative error of the polyhedral approximation of the max-cut problem. Operations
Research Letters, 16(4):191–198, 1994. 5

[VNT93] Nguyen Van Ngoc and Zsolt Tuza. Linear-time approximation algorithms for the max cut problem. Combinatorics, Probability and
Computing, 2(2):201–210, 1993. 5

5

https://ocw.mit.edu/courses/sloan-school-of-management/15-084j-nonlinear-programming-spring-2004/lecture-notes/lec23_semidef_opt.pdf
https://ocw.mit.edu/courses/sloan-school-of-management/15-084j-nonlinear-programming-spring-2004/lecture-notes/lec23_semidef_opt.pdf

	1. MaxCut
	2. Integrality Gap of MaxCut LP
	3. Positive Semi-Definite Matrix
	4. Positive Semi-Definite Programming
	5. Remark
	References

