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1. MaxSAT

We already mentioned in class that we can obtain a 3
4 -approximation algorithm by choosing the best of two, i.e.,

returning the better results of the LP rounding based algorithm and the “tossing fair coins” algorithm. We now show
that a 3

4 -approximation algorithm can be obtained directly by rounding.
Recall that our linear relaxation of MaxSAT is

max
m∑
j=1

zj

subject to
∑
i ∈Pj

yi +
∑
k ∈Nj

(1 − yk ) ≥ zj , ∀Cj =
∨
i ∈Pj

xi ∨
∨
k ∈Nj

x̄k

0 ≤ zj ≤ 1, ∀j ∈ [m]

0 ≤ yi ≤ 1, ∀i ∈ [n]

Let
{
y∗i
}
i ∈[n] ,

{
z∗j

}
j ∈[m]

be an optimal solution of the LP. Instead of tossing y∗i -biased coins for each variable, we set
up an increasing function f : [0, 1] → [0, 1] and toss f (y∗i )-biased coins. Following this idea, the probability that
Cj =

∨
i ∈Pj x j ∧

∨
k ∈Nj

x̄k is not satisfied is

(1)
∏
i ∈Pj

(1 − f (y∗i ))
∏
k ∈Nj

f (y∗k ).

Remember that we want to relate (1) with constraints z∗j ≤ ∑
i ∈Pj y

∗
i +

∑
k ∈Nj

(1 − y∗k ), in which each y∗i is linear.
Therefore, exponential function might be a good choice for f (·).

We now assume that for some β > 1, it holds that 1 − β−y ≤ f (y) ≤ βy−1 for every y ∈ [0, 1]. Then

(1) ≤ β
−∑

i∈Pj y
∗
i+

∑
k∈Nj (y

∗
k−1) ≤ β−z

∗
j .

Therefore, we have

Pr [Cj is satisfied] ≥ 1 − β−z
∗
j

1⃝
≥ (1 − β−1)z∗j ,

where 1⃝ is due to the fact that the function h(z) = 1 − β−z is concave on [0, 1]. We now have

E [X ] =
∑
j ∈[m]

Pr [Cj is satisfied] ≥ (1 − β−1)
∑
j ∈[m]

z∗j = (1 − β−1) · OPT(LP) ≥ (1 − β−1) · OPT.

The approximation ratio is increasing in β , therefore, we want to find a maximum β so that the function f (y) exists,
namely 1 − β−y ≤ βy−1 for every y ∈ [0, 1]. An easy calculation yields β ≤ 4. We plot the function 1 − 4−y and 4y−1

in Figure 1.

2. Integrality Gap

Can we find a more clever way to round the LP and beat the 3
4 bound? The answer is no if we still use the upper

bound OPT ≤ OPT(LP) in the analysis.
Consider the following CNF formula:

(2) φ = (x1 ∨ x2) ∧ (x1 ∨ x̄2) ∧ (x̄1 ∨ x2) ∧ (x̄1 ∨ x̄2).
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Figure 1. The function 1 − 4−y and 4y−1.

It is clear that OPT = 3. On the otherhand, OPT(LP) = 4 since we can set y1 = y2 = 1
2 . Therefore, let Z be the

cost of any solution of this instance, it must be the case that
Z

OPT(LP)
≤ OPT

OPT(LP)
=

3

4
,

or equivalently

(3) Z ≤ 3

4
· OPT(LP).

Now consider an α-approximation algorithm A for MaxSAT, and assume that we establish the α-approximation by
using the upper bound OPT ≤ OPT(LP) (like all LP based examples we met so far), namely we prove for any ψ , it
holds that

A(ψ ) ≥ α · OPT(LP) ≥ α · OPT.
Then we must have α ≤ 3

4 , otherwise, there is a contradiction with (3).
The 3

4 here is called the integrality gap of our LP relaxation, it is formally defined to be

min
instance I

OPT(I)
OPT(LP)(I)

,

where OPT(I) and OPT(LP)(I) are the optimal cost of the instance I and the cost of LP relaxation of I respectively.

3. Minimum Label Cut

The second example we are going to consider is the problem of minimum label s-t cut, which is formally defined
as follows:

Minimum Label s-t Cut
Input: A graph G = (V ,E); a set of labels [L] = {1, 2, . . . ,L}

such that each e ∈ E is labelled with one ℓ(e) ∈ [L]; two
vertices s, t ∈ V .

Problem: Compute a minimum set of labels L′ ⊆ [L] such that the
removal of all edges with label in L′ disconnects s and t .

We can directly write down a linear programming relaxation of the problem: For each j ∈ [L], we introduce a
variable zj indicating whether the label j is chosen, then the following LP relaxes the problem,

min
∑
j ∈[L]

zj

subject to
∑
e ∈P

zℓ(e) ≥ 1, ∀P ∈ Ps,t

zj ∈ [0, 1], ∀j ∈ [L],

where we use Ps,t to denote the collection of simple paths connecting s and t , and we represent each path P ∈ P as
a set of edges.
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We need to notice that the set Ps,t might be very large and hence the number of constraints of the LP might be
exponential. This raise the issue that how can we solve the LP in polynomial-time. In fact, we can solve this LP using
ellipsoid method provided an efficient separation oracle.

First, we can reduce the LP to the problem of deciding whether a collection of linear constraints is feasible: we
can use binary search to guess an optimal solution, say S , and check the feasibility of

S ≤
∑
j ∈[L]

zj∑
e ∈P

zℓ(e) ≥ 1, ∀P ∈ Ps,t

zj ∈ [0, 1], ∀j ∈ [L].

An efficient separation oracle is a polynomial-time algorithm that given as input a point (Ŝ, ẑ1, ẑ2, . . . , ẑL), can
• check the feasibility of this point; and if it is not feasible,
• output a constriant that the point violates.

The ellipsoid method can well approximate the optimal of an LP provided an efficient separation oracle. In this
lecture, we treat this result as a black-box, therefore, we only need to construct a separation oracle.

The separation oracle for our LP relaxation ofminimum label s-t cut is straightforward. Given a point (Ŝ, ẑ1, ẑ2, . . . , ẑL),
we first check whether Ŝ ≤ ∑

j ∈[L] ẑj . If not, the oracle returns this constraint as the violated one. We then assign
a weight zℓ(e) for each edge e . After this, we check the length of the shortest path between s and t with respect to
these weights. If the length of the shortest path is at least one, the oracle return “feasible”, otherwise, return the
constraint corresponding to the shortest path as the violated one.

In the last section of this lecture, we introduced the notion of integrality gap, which measures how “relax” the
LP is. What is the integrality gap of our LP relaxation for minimum label s-t cut? It is at least |E |, as shown by the
instance described in Figure 2.

s t

1
m

1
m

1
m

1
m

1
m

1
m

1
m

Figure 2. A path of lengthm = 7.

Formally, we can letG be a path and let s and t be the two ends respectively. Moreover, we let L = 1 so that every
edge inG is of the same label. Then it is clear that the optimal cost of the problem is one. On the otherhand, we can
let z1 = 1

|E | and the path withnesses that our integrality gap is at least |E |.
Therefore, we cannot obtain any non-trivial approximation algorithm by simply rounding the fractional solution

of the LP. Instead, we first obtain a partial cut via rounding, and then complement it combinatorially. We can
therefore circumvent the integrality gap barrier.

Here is the algorithm

Let
{
z∗j

}
j ∈[L]

be an optimal solution of the LP. Let β > 0 be a
parameter.

(1) Let L1 ≜
{
j ∈ L : z∗j ≥ β

}
.

(2) LetG ′ be the graph obtained fromG by removing edges
with label in L1.

(3) Let F be the minimum s-t cut of G ′, L2 be the labels of
edges in F .

(4) Return L1 ∪ L2.

3



In step (1), we construct a partial cut by choosing all the labels j with corresponding z∗j ≥ β for some parameter
β to be set. This rounding step simply follows the information given by the LP relaxation: larger z∗j implies the label
j is more likely to be in the optimal solution. Of course, we cannot guarantee the edges with label in L1 separate s
and t in G, so in step (3) and (4), we find a minimum s-t cut in the remaining graph and denote the set of labels in
the cut by L2. Our final solution is L1 ∪ L2.

The correctness of the algorithm is straightforward. Therefore, we only need to bound |L1 ∪ L2 |. The construction
of L1 is rounding all z∗j with z∗j ≥ β to one, therefore we have

|L1 | ≤
∑
j ∈[L]

1

β
· z∗j =

1

β
· OPT(LP) ≤ 1

β
· OPT.

It remains to bound L2, and we will turn to show that the graph G ′ has small s-t cut. If s and t are not connected,
then L2 = ∅. Otherwise, consider every simple path P connecting s and t in G ′. An important observation here is
that the path P must be quite long, this is because

• the path P survives after removing edges with label in L1, so every e ∈ P must satisfy z∗
ℓ(e) < β ; and

• the path P satisfies the constraint
∑

e ∈P z
∗
ℓ(e) ≥ 1.

The above discussion implies |P | > 1
β . Does this property imply that the graphG ′ contains small s-t cut? The answer

is Yes, and we have a few different ways to show this. One easy way is to apply Menger’s theorem from graph theory,
which is a special case of the max-flow min-cut theorem.

Theorem 1 (Menger’s Theorem). Let G ba a finite undirected graph and s , t be two distinct vertices. The size of the
minimum edge cut for s and t is equal to the maximum number of pairwise edge-disjoint paths from s to t .

In our case, since every path from s to t contains more than 1
β edges, the maximum number of pairwise edge-

disjoint paths from s to t is less than β |E |. Therefore, by Menger’s theorem, we have
|L2 | ≤ |F | ≤ β |E | .

Combining bounds for |L1 | and |L2 | together, we obtain

|L1 ∪ L2 | ≤ |L1 | + |L2 | ≤
1

β
· OPT+ β |E | .

So if we choose β =
√

OPT
|E | , we have

|L1 ∪ L2 | ≤ 2

(
|E |
OPT

) 1
2

· OPT,

in other words, we have an O

((
|E |
OPT

) 1
2

)
-approximation algorithm.

There is still one problem remains: how can we implement the algorithm for β =
√

OPT
|E | ? We do not know OPT

in advance, but we can run the algorithm with β =
√

i
|E | for all i = 1, . . . ,m and return the best solution. This can

be accomplished in polynomial-time.

4. Remark

The presention onMaxSAT problem follows [WS11, Chapter 5], you are advised to check the book formore details
about the problem. The algorithm for minimum s-t cut is from [TZ12]. In its journal version [ZFT18], the linear
programming rounding part has been replaced by a purely combinatorial algorithm with the same performance.
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