ADVANCED ALGORITHMS (XII)

CHIHAO ZHANG

1. Review of Graph Spectrum

We will study the relation between eigenvalues of the transition matrix of a Markov chain and its mixing time. Recall from Lecture 9 that we always work on reversible chains to which the spectral decomposition theorem applies. Let us first restate the theorem: Recall that for every $x, y \in \mathbb{R}^n$, we define the inner product $\langle x, y \rangle_{\pi} = \sum_{i \in [n]} \pi(i) x(i) y(i)$.

Theorem 1. Let $P \in \mathbb{R}^{n \times n}$ be reversible with respect to π and \mathcal{G}_P be its transition graph. Then the Hilbert space $(\mathbb{R}^n, \langle \cdot, \cdot \rangle_{\pi})$ has an orthonormal basis $\{v_i\}_{i \in [n]}$ corresponding to real eigenvalues $\{\lambda_i\}_{i \in [n]}$. Moreover, assuming $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$, then it holds that

(1)
$$\lambda_n = 1;$$

- (2) $\lambda_1 \ge -1$ and $\lambda_1 = -1$ if and only if one of components of \mathcal{G}_P is bipartite;
- (3) $\lambda_{n-1} = 1$ if and only if *P* is reducible.

If we let $D_{\pi} \triangleq \operatorname{diag}(\pi(1), \ldots, \pi(n))$, then we can write

$$P = \sum_{i=1}^n \lambda_i v_i v_i^T D_{\pi}.$$

We can also let $v_n = 1$ be the eigenvector corresponding to $\lambda_n = 1$ in the above theorem. Therefore, we have for every $t \ge 0$, it holds that

$$P^t = \Pi + \sum_{i=1}^{n-1} \lambda_i^t v_i v_i^T D_\pi,$$

where $\Pi = \begin{bmatrix} \pi^{T} \\ \vdots \\ \pi^{T} \end{bmatrix}$ is the matrix whose rows are all π^{T} . It follows from Theorem 1 that if *P* is irreducible and aperiodic,

then $\lim_{t\to\infty} P^t = \Pi$, and the speed of the convergence can be controlled by $(1 - \lambda^*)^t$ where

$$\lambda^* \triangleq \max\left\{ \left| \lambda_1 \right|, \left| \lambda_{n-1} \right| \right\}$$

We define the *relaxation time* of *P* as

$$\tau_{\rm rel} \triangleq \frac{1}{1-\lambda^*}.$$

Both the mixing time τ_{mix} and the relaxation time τ_{rel} measure how fast a chain converges to its stationary distribution. They are also related as in the following proposition:

Proposition 2. Let *P* be a reversible irreducible aperiodic Markov chain with stationary distribution π . Then for every $\varepsilon > 0$,

$$(\tau_{\rm rel} - 1) \log\left(\frac{1}{2\varepsilon}\right) \le \tau_{\rm mix}(\varepsilon) \le \tau_{\rm rel} \log\left(\frac{1}{\varepsilon \pi_{\rm min}}\right),$$

where $\pi_{\min} \triangleq \min_{x \in \Omega} \pi(x)$.

Recall the variational characterization of eigenvalues and the Rayleigh quotient we introduced before. We have similar notions in the Hilbert space $(\mathbb{R}^n, \langle \cdot, \cdot \rangle_{\pi})$.

Definition 3. Let $f, g \in \mathbb{R}^n$ be two vectors (we also view them as functions $[n] \to \mathbb{R}$). The *Dirichlet form* of f and g is defined to be

$$\mathcal{E}(f,g) \triangleq \langle (I-P)f,g \rangle_{\pi}.$$

The matrix I - P is the normalized Laplacian. The following proposition is a property of Laplacians (we also met it when studying graph Laplacians):

Proposition 4.

$$\mathcal{E}(f,f) = \frac{1}{2} \sum_{x,y \in \Omega} \pi(x) P(x,y) (f(x) - f(y))^2$$

Proof.

$$\begin{aligned} \text{RHS} &= \frac{1}{2} \sum_{x,y \in \Omega} f(x)^2 \pi(x) P(x,y) + \frac{1}{2} \sum_{x,y \in \Omega} f(y)^2 \pi(x) P(x,y) - \sum_{x,y \in \Omega} f(x) f(y) \pi(x) P(x,y) \\ &= \frac{1}{2} \sum_{x,y \in \Omega} f(x)^2 \pi(x) P(x,y) + \frac{1}{2} \sum_{x,y \in \Omega} f(y)^2 \pi(y) P(y,x) - \sum_{x \in \Omega} f(x) \pi(x) \sum_{y \in \Omega} f(y) P(x,y) \\ &= \sum_{x \in \Omega} f(x)^2 \pi(x) - \sum_{x \in \Omega} f(x) \pi(x) [Pf](x) \\ &= \langle f, f \rangle_{\pi} - \langle Pf, f \rangle_{\pi} \\ &= \langle (I-P)f, f \rangle_{\pi}, \end{aligned}$$

where the second equality follows from the detailed balance condition of P.

We can view the quantity $\pi(x)P(x,y)$ as the *weight* or *capacity* of the directed edge (x, y) and sometimes denote it by Q(x, y).

If we let $\gamma \triangleq 1 - \lambda_{n-1}$, the variational characterization of λ_{n-1} is

$$\gamma = \min_{\substack{f \perp_{\pi} \mathbf{1} \\ f \neq 0}} \frac{\mathcal{E}(f, f)}{\langle f, f \rangle_{\pi}}$$

For every $S \subseteq \Omega$, we define the expansion

$$\Phi(S) = \frac{\sum_{x \in S, y \in \Omega \setminus S} Q(x, y)}{\pi(S)} = \frac{\sum_{x \in S, y \in \Omega \setminus S} \pi(x) P(x, y)}{\sum_{x \in S} \pi(x)}$$

Also the expansion of the chain P

$$\Phi_P \triangleq \min_{S \subseteq \Omega: \pi(S) \le \frac{1}{2}} \Phi(S).$$

The Cheeger's inequality is then

$$\frac{\gamma}{2} \le \Phi_P \le \sqrt{2\gamma}$$

2. RANDOM WALK ON HYPERCUBES

In this section, we study the eigenvalues and eigenvectors of the random walk on hypercubes. Last week, we introduced the following chain on $\{-1, 1\}^n$: each step when one is standing at a state $\mathbf{x} \in \{-1, 1\}^n$,

- choose an index $i \in [n]$ u.a.r. and $b \in \{-1, 1\}$ u.a.r.;
- change x(i) to b.

We first look at the case when n = 1, so the transition matrix is $P_1 = \begin{bmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{bmatrix}$. The two eigenvalues are 0 and 1 with corresponding eigenvectors $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$ and **1**. Now we introduce the concept of *product chains*:

Let $P_1, P_2 \dots P_t$ be *t* chains on spaces $\Omega_1, \Omega_2, \dots, \Omega_t$ respectively. Consider the following chain defined on $\Omega \triangleq \Omega_1 \times \Omega_2 \dots \times \Omega_t$: when one is standing at a point $\mathbf{x} \in \Omega$,

- choose an index $i \in [t]$ uniformly at random; and then
- perform a move in P_i .

If we use $P \in \mathbb{R}^{2^n \times 2^n}$ to denote the transition matrix of this product chain, then for every $\mathbf{x}, \mathbf{y} \in \{0, 1\}^n$,

$$P(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} \frac{1}{n} \cdot P(x_i, y_i) \cdot \prod_{j \neq i} \mathbf{1}[x_j = y_j].$$

Product chains enjoy the following properties

Proposition 5. For every $1 \le i \le t$, if λ_i is a eigenvalue of P_i with corresponding eigenvector v_i , then

- $v_1 \otimes v_2 \otimes \cdots \otimes v_t$ is an eigenvector of P;
- $\frac{1}{n} \sum_{i=1}^{t} \lambda_i$ is an eigenvalue of *P*.

We leave the proof of these properties as an exercise.

The random walk on an *n*-dim hypercube fits perfectly in the framework of product chains. Each P_i is the one-dim hypercube which we already understood. So the two eigenvectors of P_i , if viewed as eigenfunctions, are $f_1(x) = x$ and $f_2(x) = 1$. Therefore, if we use *P* to denote the transition matrix of this random walk, then its 2^n eigenfunctions are $f_S(\mathbf{x}) = \prod_{i \in S} x_i$, indexed by every $S \subseteq [n]$. Moreover, the eigenvalue of f_S is $\frac{n-|S|}{n}$. Therefore, the second largest eigenvalue of *P* is $\frac{n-1}{n}$ and its relaxation time is *n*.

Combining with Proposition 2, we have an $O(n^2)$ upper bound for the mixing time of the random walk on the *n*-dim hypercubes. This is worse than the bound we obtained using coupling argument last week. The reason is that Proposition 2 is not tight in this example.