ADVANCED ALGORITHMS (XII)

CHIHAO ZHANG

1. REVIEW OF GRAPH SPECTRUM

We will study the relation between eigenvalues of the transition matrix of a Markov chain and its mixing time.
Recall from Lecture 9 that we always work on reversible chains to which the spectral decomposition theorem ap-
plies. Let us first restate the theorem: Recall that for every x,y € R", we define the inner product (x,y), =

Die) 7 (0)x(1)y(i).

Theorem 1. Let P € R™" be reversible with respect to = and Gp be its transition graph. Then the Hilbert space
(R™,{",*)x) has an orthonormal basis {v;};c[n) corresponding to real eigenvalues {;};c[,. Moreover, assuming A1 <
Ay < --- < Ay, then it holds that

(1) =1

(2) A1 = -1 and Ay = -1 if and only if one of components of Gp is bipartite;

(3) An—1 = 1 ifand only if P is reducible.
If we let D, = diag(n(1),...,7(n)), then we can write

n
P = Z AiUiUiTD”.
i=1

We can also let v,, = 1 be the eigenvector corresponding to A,, = 1 in the above theorem. Therefore, we have for
every t > 0, it holds that

n—1
P =TI+ Z AfviviTD,,,
i=1

where Il = | : [ is the matrix whose rows are all 7T, It follows from Theorem 1 that if P is irreducible and aperiodic,

ﬂ_.T

then lim;_,o, P! = 1, and the speed of the convergence can be controlled by (1 — A*)’ where
A" = max {|A1], [An-1l} -

We define the relaxation time of P as .

1-A

Both the mixing time 7pix and the relaxation time 7, measure how fast a chain converges to its stationary distribution.
They are also related as in the following proposition:

A
Trel =

Proposition 2. Let P be a reversible irreducible aperiodic Markov chain with stationary distribution . Then for every
e>0,

1
re_]-l — | < Tmix S1re1 5
(= 1)10g 57 < i) < i =

where fmin £ minyeq 7(x).
Recall the variational characterization of eigenvalues and the Rayleigh quotient we introduced before. We have
similar notions in the Hilbert space (R", (-, ), ).

Definition 3. Let f,g € R" be two vectors (we also view them as functions [n] — R). The Dirichlet form of f and g
is defined to be

&(f.9) ={I=P)f,g)x-
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The matrix I — P is the normalized Laplacian. The following proposition is a property of Laplacians (we also met
it when studying graph Laplacians):

Proposition 4.

E(f.f) =5 3 (P y)(F() - )
x,ye)
Proof.
RHS = 2 3 fPr(P(oy) +5 3 f@)2(0P(y)~ Y. f(0)fW)a(x)P(x.9)
x,ye) x,yeN x,ye)
=2 D PPy g Y W )P - Y fx)r) Y fe)PEy)
x,ye) x,y e x€ ye
= > fx)r(x) = > f0)x(x)[Pfl(x)
x€eN xeN
= (f+ fox— (Pf. )
= ((I=P)f, f)r>
where the second equality follows from the detailed balance condition of P. O

We can view the quantity 7 (x)P(x,y) as the weight or capacity of the directed edge (x, y) and sometimes denote
it by Q(x,y).

If we let y 2 1 — A,,_1, the variational characterization of ,_1 is
i BUD)
FLa {fs fin
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For every S C (), we define the expansion

B erS,yEQ\S Q(x’ y) i ZxES,yGQ\S H(X)P(x, y)

() #(S) Sees 7(%)

Also the expansion of the chain P

®p =  min  P(S).
Scun(S)<3

The Cheeger’s inequality is then
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2. Ranpom WALK oN HYPERCUBES

In this section, we study the eigenvalues and eigenvectors of the random walk on hypercubes. Last week, we
introduced the following chain on {—1, 1}": each step when one is standing at a state x € {-1, 1}",

e choose anindex i € [n] war. and b € {-1,1} var;
e change x(i) to b.

0.5 0.5

0.5 0,5]' The two eigenvalues are 0 and

We first look at the case when n = 1, so the transition matrix is P; = [

1 with corresponding eigenvectors [_ and 1. Now we introduce the concept of product chains:

1
Let Py, P5...P; be t chains on spaces €21, {29, .. ., §); respectively. Consider the following chain defined on 2 =
Q1 X Qg -+ X Qy: when one is standing at a point x € €2,

e choose an index i € [t] uniformly at random; and then
o perform a move in P;.
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If we use P € R2"%2" to denote the transition matrix of this product chain, then for every x,y € {0,1}",

Pexy) = 2Pl [l =y

i=1 Jj#i
Product chains enjoy the following properties

Proposition 5. Foreveryl <i <t,ifA; is a eigenvalue of P; with corresponding eigenvector v;, then

® U] ®Uy ® - ® vy is an eigenvector of P;

Lyt . ;
+ 2i—1Ai is an eigenvalue of P.

We leave the proof of these properties as an exercise.

The random walk on an n-dim hypercube fits perfectly in the framework of product chains. Each P; is the one-dim
hypercube which we already understood. So the two eigenvectors of P;, if viewed as eigenfunctions, are fi(x) = x
and f5(x) = 1. Therefore, if we use P to denote the transition matrix of this random walk, then its 2" eigenfunctions

n—

are fs(x) = [1;es xi, indexed by every S C [n]. Moreover, the eigenvalue of f5 is nIS\' Therefore, the second largest

eigenvalue of P is "T_l and its relaxation time is n.

Combining with Proposition 2, we have an O(n?) upper bound for the mixing time of the random walk on the
n-dim hypercubes. This is worse than the bound we obtained using coupling argument last week. The reason is that
Proposition 2 is not tight in this example.
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