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1. Review of Graph Spectrum

We will study the relation between eigenvalues of the transition matrix of a Markov chain and its mixing time.
Recall from Lecture 9 that we always work on reversible chains to which the spectral decomposition theorem ap-
plies. Let us first restate the theorem: Recall that for every x ,y ∈ Rn , we define the inner product ⟨x ,y⟩π =∑

i ∈[n] π(i)x(i)y(i).

Theorem 1. Let P ∈ Rn×n be reversible with respect to π and GP be its transition graph. Then the Hilbert space
(Rn , ⟨·, ·⟩π ) has an orthonormal basis {vi }i ∈[n] corresponding to real eigenvalues {λi }i ∈[n]. Moreover, assuming λ1 ≤
λ2 ≤ · · · ≤ λn , then it holds that

(1) λn = 1;
(2) λ1 ≥ −1 and λ1 = −1 if and only if one of components of GP is bipartite;
(3) λn−1 = 1 if and only if P is reducible.

If we let Dπ ≜ diag(π(1), . . . ,π(n)), then we can write

P =
n∑

i=1

λiviv
T
i Dπ .

We can also let vn = 1 be the eigenvector corresponding to λn = 1 in the above theorem. Therefore, we have for
every t ≥ 0, it holds that

P t = Π+
n−1∑
i=1

λtiviv
T
i Dπ ,

whereΠ =


πT

...
πT

 is the matrix whose rows are all πT . It follows fromTheorem 1 that if P is irreducible and aperiodic,

then limt→∞ P t = Π, and the speed of the convergence can be controlled by (1 − λ∗)t where
λ∗ ≜ max {|λ1 | , |λn−1 |} .

We define the relaxation time of P as
τrel ≜

1

1 − λ∗
.

Both themixing time τmix and the relaxation time τrel measure how fast a chain converges to its stationary distribution.
They are also related as in the following proposition:

Proposition 2. Let P be a reversible irreducible aperiodic Markov chain with stationary distribution π . Then for every
ε > 0,

(τrel − 1) log
(
1

2ε

)
≤ τmix(ε) ≤ τrel log

(
1

επmin

)
,

where πmin ≜ minx ∈Ω π(x).

Recall the variational characterization of eigenvalues and the Rayleigh quotient we introduced before. We have
similar notions in the Hilbert space (Rn , ⟨·, ·⟩π ).

Definition 3. Let f ,д ∈ Rn be two vectors (we also view them as functions [n] → R). The Dirichlet form of f and д
is defined to be

E(f ,д) ≜ ⟨(I − P)f ,д⟩π .
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The matrix I − P is the normalized Laplacian. The following proposition is a property of Laplacians (we also met
it when studying graph Laplacians):

Proposition 4.

E(f , f ) = 1

2

∑
x,y∈Ω

π(x)P(x ,y)(f (x) − f (y))2.

Proof.

RHS =
1

2

∑
x,y∈Ω

f (x)2π(x)P(x ,y) +
1

2

∑
x,y∈Ω

f (y)2π(x)P(x ,y) −
∑

x,y∈Ω
f (x)f (y)π(x)P(x ,y)

=
1

2

∑
x,y∈Ω

f (x)2π(x)P(x ,y) +
1

2

∑
x,y∈Ω

f (y)2π(y)P(y,x) −
∑
x ∈Ω

f (x)π(x)
∑
y∈Ω

f (y)P(x ,y)

=
∑
x ∈Ω

f (x)2π(x) −
∑
x ∈Ω

f (x)π(x)[P f ](x)

= ⟨f , f ⟩π − ⟨P f , f ⟩π
= ⟨(I − P)f , f ⟩π ,

where the second equality follows from the detailed balance condition of P . □

We can view the quantity π(x)P(x ,y) as the weight or capacity of the directed edge (x ,y) and sometimes denote
it by Q(x ,y).

If we let γ ≜ 1 − λn−1, the variational characterization of λn−1 is

γ = min
f ⊥π 1
f ,0

E(f , f )
⟨f , f ⟩π

.

For every S ⊆ Ω, we define the expansion

Φ(S) =

∑
x ∈S,y∈Ω\S Q(x ,y)

π(S)
=

∑
x ∈S,y∈Ω\S π(x)P(x ,y)∑

x ∈S π(x)
.

Also the expansion of the chain P

ΦP ≜ min
S ⊆Ω:π (S)≤ 1

2

Φ(S).

The Cheeger’s inequality is then
γ

2
≤ ΦP ≤

√
2γ .

2. Random Walk on Hypercubes

In this section, we study the eigenvalues and eigenvectors of the random walk on hypercubes. Last week, we
introduced the following chain on {−1, 1}n : each step when one is standing at a state x ∈ {−1, 1}n ,

• choose an index i ∈ [n] u.a.r. and b ∈ {−1, 1} u.a.r.;
• change x(i) to b.

We first look at the case when n = 1, so the transition matrix is P1 =

[
0.5 0.5
0.5 0.5

]
. The two eigenvalues are 0 and

1 with corresponding eigenvectors
[
−1
1

]
and 1. Now we introduce the concept of product chains:

Let P1, P2 . . . Pt be t chains on spaces Ω1,Ω2, . . . ,Ωt respectively. Consider the following chain defined on Ω ≜
Ω1 × Ω2 · · · × Ωt : when one is standing at a point x ∈ Ω,

• choose an index i ∈ [t ] uniformly at random; and then
• perform a move in Pi .
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If we use P ∈ R2n×2n to denote the transition matrix of this product chain, then for every x,y ∈ {0, 1}n ,

P(x,y) =
n∑

i=1

1

n
· P(xi ,yi ) ·

∏
j,i

1[x j = yj ].

Product chains enjoy the following properties

Proposition 5. For every 1 ≤ i ≤ t , if λi is a eigenvalue of Pi with corresponding eigenvector vi , then
• v1 ⊗ v2 ⊗ · · · ⊗ vt is an eigenvector of P ;
• 1

n
∑t

i=1 λi is an eigenvalue of P .

We leave the proof of these properties as an exercise.

The randomwalk on an n-dim hypercube fits perfectly in the framework of product chains. Each Pi is the one-dim
hypercube which we already understood. So the two eigenvectors of Pi , if viewed as eigenfunctions, are f1(x) = x
and f2(x) = 1. Therefore, if we use P to denote the transition matrix of this random walk, then its 2n eigenfunctions
are fS (x) =

∏
i ∈S xi , indexed by every S ⊆ [n]. Moreover, the eigenvalue of fS is n−|S |

n . Therefore, the second largest
eigenvalue of P is n−1

n and its relaxation time is n.
Combining with Proposition 2, we have an O(n2) upper bound for the mixing time of the random walk on the

n-dim hypercubes. This is worse than the bound we obtained using coupling argument last week. The reason is that
Proposition 2 is not tight in this example.
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