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1. Basic Notations

Let us first review some notations for distributions and Markov chains. Let Ω be a finite state space and µ1, µ2 be
two distributions on Ω. The total variation distance between them is defined as

dTV(µ1, µ2) =
1

2

∑
x ∈Ω

��µ1(x) − µ2(x)
�� .

It is easy to verify that
dTV(µ1, µ2) = max

A⊆Ω

��µ1(A) − µ2(A)
�� .

Let P be the transition matrix of an irreducible and aperiodic Markov chain with stationary distribution π . For
every ε > 0, the mixing time τ (ε) of P is defined to be

τ (ε) = max
µ

min
t ≥0

dTV(µ
T P t ,π) ≤ ε .

In other words, we have that the total variation distance between µT Pτ (ε) and the stationary distribution π is at most
ε for any initial distribution µ. We leave as an exercise to show that the distance

dTV(µ
T P t ,π)

is non-increasing in t , so the mixing time is well-defined.

2. Coupling and Markovian Coupling

Today we will talk about coupling, an important tool to analyze the mixing time of Markov chains. Given two
distributions µ1 and µ2 over the same space Ω, a coupling µ of µ1 and µ2 is a joint distribution µ over Ω2 such that
for every (X ,Y ) ∼ µ, the marginal distributions of (·,Y ) and (X , ·) are µ1 and µ2 respectively. Formally, we require
that for every v ∈ Ω, it holds that

Pr(X ,Y )∼µ [X = v] = µ1(v) and Pr(X ,Y )∼µ [Y = v] = µ2(v).

The name “coupling” comes from the fact that in many applications, we prefer those joint distributions µ with large
probability of X = Y when (X ,Y ) ∼ µ. We say a coupling µ optimal if it maximizes the probability of X = Y when
(X ,Y ) ∼ µ.

When Ω is finite, it is natural to view the disjoint distribution µ as a matrixMµ ∈ [0, 1] |Ω |× |Ω | such thatMµ (i, j) =
µ(i, j). The condition for coupling also naturally translates to

• for every i ∈ Ω, the sum of the probabilities in row i is equal to µ1(i), namely∑
j ∈Ω

Mµ (i, j) = µ1(i);

• for every j ∈ Ω, the sum of the probabilities in column j is equal to µ2(j), namely∑
i ∈Ω

Mµ (i, j) = µ2(j).

The optimal coupling is therefore the one maximizing the trace
∑

i ∈ΩMµ (i, i). The coupling lemma says that the
optimal coupling captures the total variation distance of two distributions.

Theorem 1 (Coupling Lemma).
dTV (µ1, µ2) = min

coupling µ
Pr(X ,Y )∼µ [X , Y ] .
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A special family of coupling with respect to Markov chains is called Markovian couplings, or couplings of Markov
chains. In our time-homogeneous setting, we view such a coupling as two runs of chains X0,X1, . . . and Y0,Y1, . . .
with the same transition matrix P . It is required that, for every t ≥ 0, the transition from (Xt ,Yt ) to (Xt+1,Yt+1) is
P while being viewed marginally. Formally, we require that for every t ≥ 0 and z, z ′ ∈ Ω,

Pr [(Xt+1,Yt+1) = (z ′, ·)
�� (Xt ,Yt ) = (z, ·)] = P(z, z ′), and

Pr [(Xt+1,Yt+1) = (·, z ′)
�� (Xt ,Yt ) = (·, z)] = P(z, z ′).

Moreover, we require that once the two chains reach the same state, they will stay the same ever since. Formally,
if for some t ′ > 0 we have Xt ′ = Yt ′ , then we require Xt = Yt for every t > t ′. This definition justifies the use of the
term “coupling”.

Assume {Xi }i≥0 and {Yi }i≥0 are two coupled chains such that X0 ∼ µX and Y0 ∼ µY . Then it is easy to verify that
the distribution of (Xt ,Yt ) is a coupling of µTXP

t and µTYP
t for every t ≥ 0.

We can use couplings to prove the convergence theorem of Markov chains, which you already met in Lecture 9.

Theorem 2. If a finite time-homogeneous chain P is irreducible and aperiodic, then it has a unique stationary distribu-
tion π . Moreover, for any initial distribution µ, it holds that

lim
t→∞

µT P t = πT .

Proof. We know that the conditions of the irreducibility and the aperiodicity imply that for some t > 0, the matrix
P t satisfies P t (x ,y) > 0 for every pair of states (x ,y). We now assume a coupling of two chains {Xi }i≥0 and {Yi }i≥0
where both chains run independently. Initially, Y0 ∼ π and X0 is arbitrary. The disjoint distribution of these two
independent chains is of course a coupling. Then for some z ∈ Ω, it holds that
(1) Pr [Xt = Yt ] ≥ Pr [Xt = Yt = z] = Pr [Xt = z] · Pr [Yt = z] = P t (X0, z) · π(z) ≥ θ > 0,

where θ is some constant larger than zero. This is equivalent to Pr [Xt , Yt ] ≤ 1−θ . By the definition of the coupling,
we have

Pr [X2t , Y2t ] = Pr [X2t , Y2t ∧ Xt = Yt ] + Pr [X2t , Y2t ∧ Xt , Yt ]

= Pr [X2t , Y2t | Xt , Yt ] · Pr [Xt , Y2t ]

≤ (1 − θ)2,

where the last inequality follows from the same argument in eq. (1). We can then repeat the argument and show that
for every k > 0,

Pr [Xkt , Ykt ] ≤ (1 − θ)k .

Therefore by the coupling lemma (theorem 1), we have Xi converges to π when i tends to infinity. □

In fact, in addition to the convergence in the limit, the coupling method can be used to bound the mixing time of
a chain. By the definition of the mixing time, we have for every initial distribution µ,

dTV(µ
T Pτ (ε),π) ≤ ε .

Therefore, if we are able to construct a Markovian coupling (Xi ,Yi )i≥0 with arbitrary initial state (X0,Y0) such that
Pr [Xt , Yt ] ≤ ε,

then we can conclude that τ (ε) ≤ t .

3. Proof of Mixing

A hypercube of dimension n is a graphG(V ,E)whose vertex set is {0, 1}n and two vertices x ,y ∈ V are connected
iff the ℓ1 distance ∥x −y∥1 = 1. Consider the following random walk on a hypercube: each step when one stands at
a state x ∈ {0, 1}n ,

• with probability 1
2 , do nothing;

• otherwise, choose an index i ∈ [n] u.a.r. and flip the value x(i).
We can use coupling to bound the mixing time of this random walk. The random walk can be viewed in the

following equivalent way, which is more convenient for us to design a coupling: each step when one stands at a
state x ∈ {0, 1}n ,

2



• choose an index i ∈ [n] u.a.r. and b ∈ {0, 1} u.a.r.;
• change x(i) to b.

We shall analyze the following coupling: Given a pair of states (Xt ,Yt ),
• Choose an index i ∈ [n] u.a.r. and b ∈ {0, 1} u.a.r.
• Change Xt (i) to b.
• Change Yt (i) to b.

In this coupling, as long as we choose some index i at step s , then Xt (i) = Yt (i) for every t > s . This fact implies
that the coupling process is equivalent to a coupon collector process, and the two chains are coupled if and only if
we collect all n coupons. We know that for coupon collector process, if we randomly sample more than n logn + cn
coupons, then the probability that we do not own all coupons is at most e−c . This means that in our coupling,

τ (ε) ≤ n logn + n log ε−1.

Now we consider a more sophisticated example, the Glauber dynamics for sampling proper colorings. In this
problem, we are given an undirected graphG = (V ,E) with maximum degree∆ and q colors. We use the following
Markov chain to sample a proper coloring of G: start from any proper coloring σ ∈ [q]V ,

• Choose a vertex v ∈ V u.a.r.
• Sample a color c from all proper colors at v .
• Change the color of v to c .

In step two, the proper colors at v are colors in [q] excluding those used by neighbours of v . The Markov chain is
always aperiodic and when q > ∆+1, it is also irreducible (verify this!). It is also not hard to verify that the uniform
distribution on all proper colorings is the stationary distribution and let us denote it by π (by looking at the detailed
balance condition). Now we construct a coupling of the chain: Given a pair of colorings (Xt ,Yt ),

• Choose a vertex v ∈ V u.a.r.
• Let LX (v),LY (v) be the set of proper colors at v in Xt and Yt respectively. Let µX and µY be the uniform
distribution on LX (v) and LY (v) respectively.

• Color Xt (v) and Yt (v) with a pair of colorings (cX , cY ) sampled from the optimal coupling of µX , µY .
We need to further explain the third step. Since both LX (v) and LY (v) are subsets of [q], the two uniform distributions
µX and µY satisfy µX (c) =

1
LX (v) and µY (c) =

1
LY (v)

for a color c in LX (v) and LY (v) respectively. It is not hard to
verify that, in the optimal coupling µ of µX and µY , we have

(2) Pr(cX ,cY )∼µ [cX = cY ] =

��LX (v) ∩ LY (v)
��

max
{��LX (v)�� , ��LY (v)��} .

For every (Xt ,Yt ) in our coupling, we use d(Xt ,Yt ) to denote the number of vertices on which Xt and Yt differ,
namely d(Xt ,Yt ) =

∑
v ∈V 1(Xt (v) , Yt (v)). We shall bound the random variable E [d(Xt+1,Yt+1)

�� (Xt ,Yt )],
which is the expected distance after one step. We first divides V into two disjoint sets At and Dt where At ={
v ∈ V : Xt (v) = Yt (v)

}
and Dt =

{
v ∈ V : Xt (v) , Yt (v)

}
. We usem to denote the number of edges betweenAt

andDt . For everyv ∈ At , we letd(v) ≜ {u ∈ Dt : {u,v} ∈ E} and for everyv ∈ Dt , we letd(v) ≜ {u ∈ At : {u,v} ∈ E}.
Then it is clear that ∑

v ∈At
d(v) =

∑
v ∈Dt

d(v) =m.

In the first step of our coupling, we get a vertex v that is either in At or in Dt .
• The quantity d(Xt+1,Yt+1) is equal to d(Xt ,Yt )+ 1 only if v is in At and in the third step, the coupling fails,
namely we have cX , cY . We assume w.l.o.g. that

��LX (v)�� ≥ ��LY (v)��. It follows from eq. (2) that cX , cY
happens with probability

1 −
��LX (v) ∩ LY (v)

����LX (v)�� ≤ 1 − LX (v) − d(v)

LX (v)
=

d(v)

LX (v)
≤ d(v)

q −∆
.

Therefore, the probability that d(Xt+1,Yt+1) = d(Xt ,Yt ) + 1 is at most
1

n

∑
v ∈Dt

d(v)

q −∆
=

m

n(q −∆)
.
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• The quantity d(Xt+1,Yt+1) is equal to d(Xt ,Yt ) − 1 only if v is in Dt and in the third step, the coupling
succeeds, namely we have cX = cY . This event happens with probability��LX (v) ∩ LY (v)

����LX (v)�� ≥ 1 − ∆ − d(v)��LX (v)�� ≥ q − 2∆ + d(v)

q −∆
.

Therefore, the probability that d(Xt+1,Yt+1) = d(Xt ,Yt ) − 1 is at least
1

n

∑
v ∈At

q − 2∆ + d(v)

q −∆
=

(q − 2∆) |Dt | +m

n(q −∆)
.

Therefore, if we let a = m
n(q−∆)

, b =
(q−2∆) |Dt |+m

n(q−∆)
, then

E [d(Xt+1,Yt+1)
�� (Xt ,Yt )] ≤ a · (d(Xt ,Yt ) + 1) + b · (d(Xt ,Yt ) − 1) + (1 − a − b)d(Xt ,Yt )

= a − b + d(Xt ,Yt )

=

(
1 − q − 2∆

n(q −∆)

)
· d(Xt ,Yt ).

Therefore, if we have q ≥ 2∆ + 1, then for every t ≥ 0,

E [d(Xt+1,Yt+1)
�� (Xt ,Yt )] ≤

(
1 − 1

2n

)
d(Xt ,Yt ).

Taking expectation on both sides implies

E [d(Xt+1,Yt+1)] ≤
(
1 − 1

2n

)
E [d(Xt ,Yt )]

holds for every t ≥ 0. Since d(X0,Y0) ≤ n, we have

E [d(Xt ,Yt )] ≤ n

(
1 − 1

2n

)t
≤ ne−

t
2n .

If we let X0 ∼ µ and Y0 ∼ π , then for t = 2n log n
ε , we have

dTV(π
T P t ,π) ≤ Pr [Xt , Yt ] = Pr

[��d(Xt ,Yt )
�� ≥ 1

]
≤ E [d(Xt ,Yt )] ≤ ε .

This means τ (ε) ≤ 2n log n
ε .
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