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1. Monte Carlo Algorithms

TheMonte Carlo algorithms are a family of randomized algorithms based on repeatedly sampling. Today we first
give you some examples of these algorithms and then show how Markov chains naturally arise in this setting. Let
us start with the following experiment to estimate the value of π :

(1) Sample points in the square [−1, 1] × [−1, 1] on R2.
(2) Count the number of points locating in the circle of radius one centered at the origin.
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Figure 1. Monte Carlo algo-
rithm to estimate π

Formally, for every i = 1, 2, . . . , we independently sample a pair
(Xi ,Yi ) where Xi ,Yi are uniform reals on [−1, 1] and let

Zi =

{
1 if X 2

i + Y 2
i ≤ 1;

0 otherwise.

Then E [Zi ] = Pr [Zi = 1] = π
4 . Therefore, if we samplem points

(X1,X2), . . . , (Xm ,Xm), then the expectation of
∑m
i=1 Zi
m is π

4 . Intu-
itively, the largermwe choose, more accurate the estimation is. The
relation between m and the accuracy is provided by the Chernoff
bound in a very tight sense.

Proposition 1. Let X =
∑m

i=1Xi where each Xi ∼ Bin(p) is an independent Bernoulli random variable. Let µ = pm
be the expectation of X and 0 ≤ ε ≤ 1 be a constant. Then

Pr [|X − µ | ≥ εµ] ≤ 2 exp
(
−ε

2µ

3

)
.

In our setting, we have p = π
4 . Let Z =

∑m
i=1 Zi . For every 0 ≤ δ ≤ 1, if we want

Pr
[���Z − π

4
m
��� ≥ ε · π

4
m
]
≤ 2 exp

(
−ε

2πm

12

)
≤ δ ,

then it is required that

m ≥ 12

ε2π
log 2

δ
.

In fact, the bound for the number of trialsm above is proportional to 1
p , which is the expected number of samples

that one needs before Zi = 1 for the first time.
The dependency of 1

p is crucial in many cases. Consider the problem of counting the number of solutions of DNFs.
Let V be a finite set of variables. A DNF formula is of the form

φ =
m∨
i=1

Ci ,

where each Ci =
∧ℓi

j=1 x j . Here x j can be either a variable or the negation of a variable in V . We are interested in
the following computational problem

#DNF
Input: A DNF φ = C1 ∨ C2 · · · ∨ Cm where each Ci = xi,1 ∧

xi,2 · · · ∧ xi, ℓi .
Problem: Compute the number of satisfying assignments of φ.
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We use #φ to denote the number of satisfying assignments of φ. The problem of computing #φ is known to be
#P-hard, so we do not expect any polynomial-time algorithm to solve it exactly. We now propose a Monte Carlo
algorithm to approximate the number.

Thefirst ideawould be tomimic our strategy to approximateπ : Randomly sample an assignmentσ ∈ {true, false}V ,
and let Zi be the indicator of whether σ satisfies φ. We then use Z =

∑m
i=1 for sufficiently largem as an estimate.

We already argued that the number of trials we need to guarantee good accuracy is proportional to Pr [Zi = 1]−1,
which in our case is exactly 2|V |

#φ . This ratio, 2|V |

#φ , can be exponential in |V | when each clause Ci of φ is large.
In fact, we can improve the efficiency of our algorithm by sampling from another space, which can be much

smaller than the set of all assignments {true, false}V in many cases.
For every i ∈ [m], we use Si ⊆ {true, false}V to denote the set of satisfying assignments of the clause Ci . We will

sample from
⊔

i ∈[m] Si , the disjoint union of Si for i ∈ [m]. To ease the presentation, we let

S =
{
(σ , i) : σ ∈ Si

}
.

Obviously S is just another way to represent ⊔i ∈[m]Si . The set we really want to sample from is the set of satisfying
assignments of φ, namely

∪
i ∈[m] Si . It is easy to identify a subset of S whose cardinality is the same as

∪
i ∈[m] Si .

For example, we can let
T =

{
(σ , i) ∈ S : for every j < i,σ < S j

}
.

Then |T | =
��∪

i ∈[m] Si
�� (check this!). We have the following facts:

• We can compute the size of Si and sample from Si u.a.r. efficiently. In fact, if Si contains both x and x̄ for
some variable x , then it is not satisfiable. Otherwise, if it contains k literals, then |Si | = 2 |V |−k and sampling
from Si is trivial.

• We can sample from S u.a.r. efficiently. We can achieve this by first sampling an index i ∈ [m] with proba-
bility |Si |∑

j∈[m] |Sk | and then uniformly sampling an assignment σ from Si . Please verify that the pair (σ , i) we
obtained in this way is uniform in S by yourself.

• For every pair (σ , i), we can efficiently check whether it is in T . We simply check for every j < i , whether
it holds that σ ∈ S j .

The above facts already indicated our new Monte Carlo algorithm: Randomly sample a pair (σ , i) ∈ S and let Z j
be the indicator of whether (σ , i) is in T . Since every assignment σ ∈ ∪

i ∈[m] Si can appear in at mostm pairs in S,
we have

|T |
|S| ≥

1

m
.

Then by the Chernoff bound we just used, it holds that if we choose Z =
∑t

j=1 Z j for t = Θ(m), the quantity Z
t · |S|

is a good estimate for #φ.

2. Markov Chain Monte Carlo

As shown by the examples in the last section, sampling from a given distribution is an important yet non-trivial
computational task. Markov chains turn out to be a powerful tool for this kind of problems, as it is relatively easy
to construct a well-behaved chain whose stationary distribution is any given distribution.

Let Ω be the state space and π be a distribution over Ω. The goal of this section is to define a Markov chain, or
equivalently a random walk on Ω whose stationary distribution is π . We also assume an transition graph of the
chain (with transition probability unknown) and an upper bound on the maximum degree of the transition graph for
efficiency consideration. This is to say, for every state x ∈ Ω, we have a set N (x) called neighbours of x , consisting of
those states that one can move from x in one step. Moreover,

��N (x)
�� < M for every x ∈ Ω. In fact, this assumption

is quite natural. In most applications, the space Ω is very large (say, exponential in the size of the input), and the
philosophy behind the MCMC is that we can approximate π by only sampling from a small space (a local distribution

on N (x)) in each step. Otherwise, the construction of the Markov chain is trivial as we can always let P = Π =


πT

...
πT

 ,
and simulating the chain is almost equivalent to directly sampling from π (which is not affordable)!

We now propose a Markov chain called Metropolis Algorithm to sample from π . Assuming now we are at some
state x ∈ Ω, the algorithm determines the next state in two steps:
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1. First sample a state y from N (x) ∪ {x} so that every z ∈ N (x) is of probability 1
M and the state x is of

probability 1 − |N (x) |
M .

2. Then move to state y with probability min
{
1,

π (y)
π (x)

}
(if fail to move, just stay at x ).

Proposition 2. If the pre-specified transition graph is connected (irreducible) and symmetric (x ∈ N (y) iff y ∈ N (x)
for every x ,y ∈ Ω), then Metropolis algorithm is an aperiodic reversible chain with stationary distribution π .

Proof. Let P be the transition matrix. Then it is clear that P(x ,x) > 0 for every x sinceM >
��N (x)

��. So P is aperiodic.
Then it suffices to verify the detailed balance condition. For every x ,y such that y ∈ N (x), assuming π(y) ≤ π(x),
we have

π(x)P(x ,y) = π(x) · 1

M
·min

{
1,

π(y)

π(x)

}
=

π(y)

M
= π(y) · 1

M
·min

{
1,

π(x)

π(y)

}
= π(y)P(y,x).

□

Now let me show you some applications of Metropolis algorithms. Consider the following hardcore model in
statistical physics.

• We are given an undirected graph G(V ,E) with a parameter λ.
• Consider the set of independent sets I ofG. Each independent set I ∈ I is associated with a weightw(I) =
λ |I | .

• The Gibbs measure µ of the model is a distribution over I such that for every I ∈ I,

µ(I) =
w(I)

Z
,

where Z =
∑

I ∈I w(I) is the normalizing factor.
We can use the Metropolis algorithm to sample from µ. The state space Ω is I, the set of all independent set.

First we setup the transition graph. For each I ∈ I, we are allowed to move to any independent set that differs
from I by exactly one vertex. Formally, we define N (I) as a set of independent sets such that I ′ ∈ N (I) if and only if
I ′ = I ∪{u} for someu ∈ V \ I or I ′ = I \ {u} for someu ∈ I . Therefore, we have

��N (I)
�� ≤ |V | and can letM = |V |+1.

Assuming now we are at some independent set I , we then faithfully follow the steps of the Metropolis algorithm to
find the next independent set:

1. With probability 1
M , stay at I and terminate.

2. Choose a vertex u ∈ V uniformly at random.
3. If u ∈ I , move to I \ {u} with probability min

{
1, 1λ

}
. If u < I and I ∪ {u} ∈ I is an independent set, move to

I ∪ {u} with probability min {1, λ}.
4. If the above step fails to move, stay at I .

Proposition 2 implies that the above chain converges to the Gibbs measure.
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