
ADVANCED ALGORITHMS (I)

CHIHAO ZHANG

1. MaxSAT

In the first part of this course, we will focus on approximation algorithms for NP-hard problems. The running
example of this lecture is the problem of MaxSAT

MaxSAT
Input: A CNF formula φ = C1 ∧C2 · · · ∧Cm .

Problem: Compute an assignment that satisfies maximum number
of clauses.

We will propose three (approximation) algorithms for MaxSAT today.

2. Flipping a Coin

The following strategy seems to be stupid: We toss an independent fair coin for each variable and set its value
according to the outcome of the toss, i.e., each variable is set to true/false with probability 1

2 .
It turns out that the performance of this simple strategy is not very bad. We assume the variables of the formula

φ are among {x1, . . . ,xn}. Let X denote the number of clauses satisfied by our algorithm. Note that X is a random
variables since we are tossing coins. Then by the linearity of expectation,

(1) E [X] =
m∑
i=1

Pr [Ci is satisfied] =
m∑
i=1

(
1 − 2−ℓi

)
≥ m

2
,

where ℓi is the length of the ith clause, i.e., the number of distinct variables appearing in Ci .
We want to show that E [X] is not too bad comparing to the optimal solution. Therefore, we need to establish an

upper bound for the optimal solution.
A trivial upper bound in our case is that

(2) OPT ≤ m.

Therefore, we obtain E [X] ≥ OPT
2 by combining (1) and (2).

Can we improve this? The worst case of the above analysis is when ℓi = 1 for some Ci . We have the following
observation:

• if for some variable x , only one of x or x̄ appeared as a clause, say x , then we can increase the probability
that x is set to true when tossing the coin;

• if both x and x̄ appeared as clauses, then we can improve the upper bound (2), since these two clauses cannot
be both satisfied in any assignment.

Therefore, we can assume without loss of generality that we have more positive singleton clauses than negative
singleton clauses, i.e., more clauses of the form C = x than C = ȳ. Consider the collection of variables x such that
both x and x̄ are clauses, let

S = {x ∈ {x1, . . . ,xn} : both x and x̄ are clauses} ,

and t = |S |, then we have a new upper bound for OPT:

(3) OPT ≤ m − t
1

If we useC to denote the set of all clauses ofφ, then by our assumption, every clause inC′ ≜ C\({x : x ∈ S} ∪ {x̄ : x ∈ S})
is either positive singleton or contains at least two literals. Now we can toss an independent unfair coin with prob-
ability p ≥ 1

2 to true for each variable, then

(4) E [X] = t +
∑
C ∈C′

Pr [C is satisfied] ≥ t + (m − 2t)min
{
p, 1 − p2

}
.

The first t in (4) is because exact t clauses in C \ C′ are satisfied in any assignment. For the remainingm − 2t
clauses C ∈ C ′: (1) if it is a singleton, then it is satisfied with probability p; (2) otherwise, the worst case is when
C = ȳ ∨ z̄ for some variables y and z, then it is satisfied with probability 1 − p2.

Combining (3) and (4), we obtain

E [X] ≥ t + (OPT − t)min
{
p, 1 − p2

}
≥ min

{
p, 1 − p2

}
· OPT.

Therefore, we can optimize min
{
p, 1 − p2

}
by letting p satisfy p = 1 − p2 to obtain

E [X] ≥ α · OPT

where α ≈ 0.618.

3. Clever Coins via Linear Programming

In previous two algorithms, we toss identical coins for each variable. This might not be optimal since intuitively,
for those variables whose appearances are mostly positive, we prefer to set it true. This motivates us to use different
coins for each variable. It is not an easy task to decide the probability of each coin, we now use linear programming
to help us to make the decision.

The first step is to write an instance of MaxSAT as an instance of integer programming. For every i ∈ [n], we
introduce a variable yi indicating whether the variable xi in φ is set true; for every j ∈ [m], we introduce a variable
zj indicating whether the clause Cj is satisfied. Then MaxSAT is equivalent to

max
m∑
j=1

zj

subject to
∑
i ∈Pj

yi +
∑
k ∈Nj

(1 − yk) ≥ zj , ∀j ∈ [m] s.t. Cj =
∨
i ∈Pj

xi ∨
∨
k ∈Nj

x̄k

zj ∈ {0, 1} , ∀j ∈ [m]

yi ∈ {0, 1} , ∀i ∈ [n]

The above is nothing but reformulate the problem as an integer programming instances, and it is of course NP-
hard to solve. The difficulty comes from the non-linear constraints yi ∈ {0, 1} and zj ∈ {0, 1}. We can relax these
constraints and obtain the following linear program.

max
m∑
j=1

zj

subject to
∑
i ∈Pj

yi +
∑
k ∈Nj

(1 − yk) ≥ zj , ∀j ∈ [m] s.t. Cj =
∨
i ∈Pj

xi ∨
∨
k ∈Nj

x̄k

0 ≤ zj ≤ 1, ∀j ∈ [m]

0 ≤ yi ≤ 1, ∀i ∈ [n]

Linear programming can be solved in polynomial-time. Therefore, we can obtain an optimal solution
{
y∗i

}
i ∈[n] ,

{
z∗j

}
j ∈[m]

of the LP. Although the LP is not equivalent to MaxSAT, it is close to. Therefore, the optimal solution of the LP is
informative. Ideally, y∗i indicates how likely the variable xi is set to true in the optimal solution. Therefore, we toss
a coin with probability y∗i to true for every variable xi .

2

A typical upper bound for LP based algorithms is the optimal solution of the relaxed linear program. Since the
constrinats of the linear program is weaker than the integer program, we have

(5) OPT ≤ OPT(LP) =
m∑
j=1

z∗j .

On the otherhand, we have for every Cj =
∨

i ∈Pj xi ∨
∨

k ∈Nj
x̄k ,

Pr [Cj is not satisfied] =
∏
i ∈Pj

(1 − y∗i)
∏
k ∈Nj

y∗k

1⃝
≤ ©« 1ℓj ©«

∑
i ∈Pj

(1 − y∗i) +
∑
k ∈Nj

y∗k
ª®¬ª®¬

ℓj

=
©« 1ℓj ©«ℓj − ©«

∑
i ∈Pj

y∗i +
∑
k ∈Nj

(1 − y∗k)
ª®¬ª®¬ª®¬

ℓj

2⃝
≤

(
1 −

z∗j
ℓj

)ℓj
,

where 1⃝ uses the inequality of arithmetic and geometric means and 2⃝ follows from the fact that z∗j and y∗i s satisfy
the corresponding constraints in the LP.

Therefore, we obtain

(6) E [X] =
m∑
j=1

Pr [Cj is satisfied] ≥
m∑
j=1

(
1 −

(
1 −

z∗j
ℓj

)ℓj)
.

Remember that we need to compare (6) with the upper bound (5), i.e., a linear function of z∗j . This motivates us to
lower bound (6) with a linear function. Let h(z) ≜ 1 −

(
1 − z

ℓ

)ℓ , then it is easy to verify that the function h(·) is
concave in [0, 1]1 for any integer ℓ ≥ 1. Thus we have h(z) ≥ h(1) · z and

E [X] ≥
m∑
j=1

(
1 −

(
1 − 1

ℓj

)ℓj)
z∗j ≥

(
1 − e−1

) m∑
j=1

z∗j ≥
(
1 − 1

e

)
· OPT.

4. Remark

The main reference of this lecture is [WS11, Chapter 5].

References
[WS11] David P Williamson and David B Shmoys. The design of approximation algorithms. Cambridge university press, 2011. 3

1h′′(z) < 0 when z ∈ [0, 1]

3

	1. MaxSAT
	2. Flipping a Coin
	3. Clever Coins via Linear Programming
	4. Remark
	References

