ASSIGNMENT III

Problem 1. Prove the following statement. If *P* is the transition matrix of an irreducible and aperiodic chain on the state space Ω , then there exists some $t \ge 1$ such that $P^t(x, y) > 0$ holds for every $x, y \in \Omega$.

Problem 2. Prove the following statement. Let *P* be the transition matrix of a reversible Markov chain on [n] with stationary distribution π . Let $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ be its eigenvalues. Then

(1)
$$\lambda_n = 1;$$

- (2) $\lambda_1 \ge -1$ and $\lambda_1 = -1$ if and only if one of components of \mathcal{G}_P is bipartite;
- (3) $\lambda_{n-1} = 1$ if and only if *P* is reducible.

Problem 3. Let *p* be the transition matrix of an irreducible and aperiodic chain with stationary distribution π . Let μ be an arbitrary distribution. Prove that the distance

$$d_{\mathrm{TV}}(\mu^T P^t, \pi)$$

is non-increasing in t.

Problem 4. Recall in Lecture XII we use P_i to denote a chain on Ω_i for every i = 1, ..., n respectively. We also define the *product chain* P on $\Omega_1 \times \Omega_2 \times \cdots \times \Omega_n$ as follows: when one is standing at a point $\mathbf{x} \in \Omega$,

- choose an index $i \in [n]$ uniformly at random; and then
- perform a move in P_i .

Equivalently, we have for every $\mathbf{x}, \mathbf{y} \in \{0, 1\}^n$,

$$P(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} \frac{1}{n} \cdot P_i(x_i, y_i) \cdot \prod_{j \neq i} \mathbf{1}[x_j = y_j].$$

Prove the following property of *P*: For every $1 \le i \le n$, if λ_i is an eigenvalue of P_i with corresponding eigenvector v_i , then

- $v_1 \otimes v_2 \otimes \cdots \otimes v_n$ is an eigenvector of *P*;
- $\frac{1}{n} \sum_{i=1}^{n} \lambda_i$ is an eigenvalue of *P*.