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Abstract In this paper, we study the Radiation Hybrid Map Construction
(RHMC) problem which is about reconstructing a genome from a set of gene
clusters. The problem is known to be NP-complete even when all gene clus-
ters are of size two and the corresponding problem (RHMC2) admits efficient
constant-factor approximation algorithms. In this paper, for the first time, we
consider the more general case when the gene clusters can have size either two
or three (RHMC3). Let p-RHMC be a parameterized version of RHMC where
the parameter is the size of solution. We present a linear kernel for p-RHMC3

of size 22k that when combined with a bounded search-tree algorithm, gives
an FPT algorithm running in O(6kk + n) time. For p-RHMC2 we present a
bounded search tree algorithm which runs in O∗(2.45k) time, greatly improv-
ing the previous bound using weak kernels.

1 Introduction

Radiation hybrid (Rh) mapping is an earlier technique for mapping unique
DNA sequences onto chromosomes and whole genomes. The achieved map
of these DNA sequences provide a basis for association studies in modern
genetics. The technique has been used since 1990 for construction maps of
small chromosomal regions for human and several other mammals [5,10,11].

In Rh mapping experiments, chromosomes of the target organism are ran-
domly broken into small DNA fragments through gamma radiation. The un-
derlying mechanism is that, when two markers are physically close to each
other on the chromosome, the probability that these two markers are broken
down by the gamma radiation is low, and so with a high probability they are
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either co-present in or co-absent from a DNA fragment. The radiation hybrid
map construction (RHMC) problem is to determine the most likely linear order
of the markers using the observed co-occurrences. We will formally define this
problem in the next section.

Traditional Rh map construction methods are mostly heuristics, and often
they are only able to produce framework maps on a small portion of all the
markers [6]. Slonim et al. proposed a hidden Markov model on the Rh mapping
data and used a maximum-likelihood approach to compute the map [11]; Givry
et al. proposed to take advantage of known sequence information for target
chromosomes for building more robust maps [3]. In [2], the RHMC2 problem
(i.e., each cluster contains two genes) was shown to be NP-hard and a 2-
approximation algorithm was presented. The approximation ratio was then
improved to 10/7 in [1].

In this paper, we study the problem under the framework of parameterized
complexity. We restrict our attention to the case when the size of each cluster
is at most 3. We show that this problem is Fixed-Parameter Tractable (FPT)
by presenting a 22k kernel for it. Moreover, on top of the kernel, we present a
bounded search-tree algorithm which runs in O(6kk + n) time. Furthermore,
in the case when the size of each cluster is at most 2, we give an improved
FPT algorithm which runs in O∗(2.45k) time.

This paper is organized as follows. In Section 2, we give some necessary
definitions regarding the problem as well as FPT algorithms. In Section 3, we
present the linear kernel for RHMC3, where each cluster has at most three
genes, and then give an FPT algorithm based on the kernel. In Section 4,
we present an improved FPT algorithm for RHMC2. Finally in Section 5, we
conclude the paper with several open questions.

2 Preliminaries

Radiation Hybrid Map Construction Problem. Let Σ be a set of markers, and
C = {Ci ⊆ Σ : 1 ≤ i ≤ n} be a set of clusters, with |Ci| ≤ d. The problem is
to decide whether after deleting some k clusters, there is a total order ≤ on Σ
under which for every remaining cluster C, the markers in C are consecutive.

For example, take Σ = {a, b, c, d} and C1 = {b, c, d}, C2 = {a, c, d}, C3 =
{a, b}. If none of C1, C2, C3 is deleted, there is no total order on Σ satisfying
our requirement. However, if we delete C1, the order c ≤ d ≤ a ≤ b satisfies
the condition since both C2 = {a, c, d} and C3 = {a, b} appear consecutively.

We denote this problem by RHMC. For fixed d, we call it RHMCd. It is easy
to see that RHMC2 is equivalent to the so-called Minimum co-Path problem:
Given a simple undirected graph, can we delete some k edges, resulting a graph
which is a disjoint union of paths? Minimum co-Path problem can be viewed
as the complement of the Hamiltonian path problem, hence it is NP-hard [2].

Fixed-Parameter Tractable Algorithm. Let (I, k) be an instance of parameter-
ized problem. An FPT algorithm decides (I, k) in time f(k) · nc, where f is
an arbitrary computable function that only depends on k and c is a constant.
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We often use the notation O∗(f(k)) to suppress the polynomial term. A basic
approach towards FPT algorithm is to consider the problem kernel. Formally,
a polynomial time algorithm K is a kernelization if it reduces the instance
(I, k) to another instance (I ′, k′) such that (1) (I, k) is a YES instance if and
only if (I ′, k′) is a YES instance, and (2) there is a computable function h
such that |I ′| ≤ h(k). The reduced instance (I ′, k′) is called the kernel, and if
h is a linear function, we say that the kernel is linear. It is well known that a
parameterized problem is FPT if and only if it has a kernel. In many cases,
the kernelization K consists of many reduction rules which reduce the size
of the input instance and can be implemented in polynomial time. For more
information on parameterized complexity and algorithms, one can refer to [4,
7,9]. The parameterized version of RHMCd is defined as follows:

p-RHMCd Problem
Input: A set of clusters C = {Ci ⊆ Σ : 1 ≤ i ≤ n} with

|Ci| ≤ d, and an integer k ∈ N.
Parameter: k.

Problem: Decide whether after deleting some k clusters, there is
a total order ≤ on Σ under which for every remaining
cluster C, the markers in C are consecutive.

3 A Linear Kernel for p-RHMC3

Let Σ be a set of markers, and I = (C = {Ci ⊂ Σ : 1 ≤ i ≤ n}, k) be an
instance of p-RHMC3 such that |Ci| ≤ 3 for all 1 ≤ i ≤ n. We can rephrase
p-RHMC3 as a problem on graphs:

Let G(I) = (V (I), E(I)) be an undirected graph. We consider each marker
c ∈ Σ as a vertex in G(I). We add edge {u, v} to E(I) if u, v ∈ Ci for some i
and u ̸= v. Since each cluster contains at most 3 markers, it can be viewed as
a subgraph (a vertex, or two vertices on an edge, or a K3) in the G(I). We call
a subgraph of G(I) legal if it corresponds to some cluster. We say two clusters
Ci, Cj are neighbors if Ci ∩ Cj ̸= ∅, i.e. their corresponding subgraphs share
at least one vertex.

Then RHMC3 is equivalent to deciding whether one can remove a set S(I)
of k clusters from I such that there exists a set of disjoint paths T (I) in G(I)
and for each remaining legal subgraph: (1) if it is a triangle, then it contains
exactly two edges covered by some path in T (I); (2) if it is an edge or a vertex,
it belongs to some path in T (I). We call T (I) the valid set.

In Section 3.1 we will define the notion of good pattern and present a linear
kernel in Section 3.2.

3.1 Good patterns

To ease the presentation, we first consider the case that all clusters are of
size 3, i.e. all the legal subgraphs are triangles. We denote this problem by
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(f) (g) (h) (i) (j)

Fig. 1 10 good patterns of shaded cluster.

p-RHMC3
∗. At the end of Section 3.2, we will come to the general case of

p-RHMC3.
We first consider patterns across which one can draw a path. For a fixed

cluster, consider all its neighbors, there are 10 such patterns as illustrated in
Figure 1. (The fixed cluster is the one shaded and the thick line denote the
path.)

A cluster C is good if its neighbors and itself form a pattern in Figure 1
where C is the shaded one; a good cluster is free if all of its neighbors are
good. If a cluster is not good, we call it bad.

Given an instance I, if all clusters are good, then it is easy to solve this
instance. IfG(I) contains more than one component, then we can consider each
component independently. Hence in the following we assume that at least one
cluster is bad and G(I) is connected.

We immediately have the following lemma:

Lemma 1 Let I = ({Ci : 1 ≤ i ≤ n}, 0) be an instance of RHMC3
∗. Define

H(I) = (VH(I), EH(I)), where VH(I) = {Ci : 1 ≤ i ≤ n} and {Ci, Cj} ∈
EH(I) if and only if Ci ∩Cj ̸= ∅. Then I is a YES instance if and only if (1)
all the clusters are good (hence free) and (2) H(I) contains no cycle.

Proof The “only if” direction is straightforward, as we need to at least remove
one cluster in bad pattern. Moreover, if H(I) contains a cycle, we need to
remove at least one cluster to break the cycle.

If all clusters are good, by recognizing all patterns in Figure 1, it is easy
to verify that we can also connect two valid paths when attaching two good
clusters. ⊓⊔

This lemma directly implies an FPT algorithm for p-RHMC3
∗: For a bad

cluster, consider a minimal bad pattern (removing any one of clusters in this
pattern forms a good pattern) containing it and its neighbors. Since a good
pattern contains at most 5 clusters (see (j) in Figure 1), this minimal bad
pattern contains at most 6 clusters. We know at least one of these 6 clusters
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Fig. 2 Contraction of patterns (c)(d) and (e).

needs to be removed, hence it implies an O∗(6k) time FPT algorithm using
the bounded search-tree method. After all the bad patterns are destroyed, we
need to in addition break all the cycles.

Theorem 1 p-RHMC3
∗ can be solved in O(6kn) time.

3.2 Kernelization algorithm

In this section, we present a kernelization algorithm for p-RHMC3
∗. Let I be

an instance. We first define an operation on good patterns called contraction.
Let C be a good cluster of size 3, if its pattern is among (a)(b)(f)(g)(h)(i)(j)
in Figure 1, then contracting C means removing C from I. Otherwise, if C’s
pattern is among (c)(d)(e), then by contraction we mean removing C from I
and identifying two vertices of its neighbors, as depicted in Figure 2.

Our kernelization algorithm is exhaustively applying the following rule:

Rule: If there is a free cluster C in G, then contract it.

Lemma 2 Let I = (C, k) be an instance of p-RHMC3
∗ where C = {Ci : 1 ≤

i ≤ n}, C be a free cluster. Let I ′ = (C′, k) be the instance obtained from I by
contracting C. Then I is a YES instance if and only if I ′ is a YES instance.

Proof We first prove the “only if” direction: Assume that I is a YES instance.
If C is of pattern (a)(b)(f)(g)(h)(i)(j), contracting C is equivalent to deleting
C, hence a solution set of I is also a solution set of I ′. Otherwise, let S(I)
and T (I) be the solution set and valid set of I respectively. If C ̸∈ S(I), then
S(I) is also a solution set of I ′. If C ∈ S(I), we can consider the case that
all neighbors of C are not in S(I) without loss of generality, this is because if
some neighbor C ′ ∈ S(I), then the analysis is the same as in the pattern that
C ′ is removed.

If C’s pattern is (c) (d) (e), let S(I ′) = S(I) \ {C} ∪ {C ′} where C ′ is the
cluster {a, b, c}. It is easy to see S(I ′) is a solution set of I ′, T (I ′) is obtained
from T (I) by removing edges in C ′.

To prove the “if” part we need more effort. Assume I ′ is a YES instance
and let S(I ′) be one of its solution of size at most k, we show that S(I ′) is
also a solution set of I.

We know that after removing S(I ′) in G(I ′), we can find a valid set T (I ′).
We claim that after restoring C in G(I ′), either



6 Chihao Zhang et al.

1

2

3
4

a b

c

d
e

f
g

Fig. 3 One good pattern of C′.

(1) there exists a path in C that connects two paths in T (I ′), or
(2) C already has two edges covered by some path in T (I ′).

We first prove the claim. Since C is free, all its neighbors are good, and
hence it is among the 10 patterns illustrated in Figure 1. Let C ′ be one of its
neighbors, we justify the claim by examing the pattern of C ′.

The pattern illustrated in Figure 3 encompasses all situations, where C ′ is
cluster 2 (the one shaded). We analyse this pattern in detail and other patterns
can be checked similarly.

a. If C is cluster 1, after contracting C, the path in T (I ′) must be P = cedgf .
Thus after restoring C, we can extend P with path cba or cab (depending
on which one of a and b is identified with c while contracting).

b. If C is cluster 3, after contracting C, the path in T (I ′) across this pattern
may be P1 = abcedgf , P2 = bacedgf , P3 = abcedfg or P4 = bacedfg.
Restoring C does not affect P1 and P2. If it is the case of P3 (resp. P4), we
can safely replace the path by abcedgf (resp. bacedgf). This is because we
only have two ways to force the existence of edge df in some path:
(1) We have some cluster {d, f, x} (x is not among {a, b, c, d, e, f, g}, but

this cluster shares a vertex with cluster 2 and hence it is impossible in
this pattern.

(2) We have some cluster {g, x, y} (x, y are not among {a, b, c, d, e, f, g}),
but in this situation, cluster 3 is no longer good.

c. If C is cluster 4, after contracting C, the path in T (I ′) across this pattern
may be P1 = abcedg, P2 = bacedg, P3 = abcdeg or P4 = bacdeg. Restoring
C does not affect P1 and P2. If it is the case of P3 (resp. P3), we can safely
replace the path by abcedg (resp. bacedg). The reason is similar to case b
above.

By the claim, if (1) happens, restoring C only extends some path in T (I ′);
if (2) happens, restoring C does not affect T (I ′). Then we know S(I ′) is also
a solution set of I. ⊓⊔

Now we come to the general case of p-RHMC3, i.e. some clusters may be of
size 2.

We first generalize the operation of contraction in the following way: Let I
be an instance and C be a 2-sized cluster. If there is another 3-sized cluster C ′

such that C ⊂ C ′, then contracting C is equivalent to removing C. Similarly,
for a 3-sized cluster C, if there is another 2-sized cluster C ′ such that C ′ ⊂ C,
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Fig. 4 Good patterns of 2-sized clusters such that all the neighbors are triangles.

then contracting C is equivalent to removing C. Otherwise, for a 2-sized cluster
C, the operation is equivalent to contracting the edge in G(I) and for a 3-sized
cluster, the definition of contraction is the same as the case in p-RHMC3

∗.
Secondly, in RHMC3, some new patterns are introduced, both for 2-sized

clusters and 3-sized clusters. Figure 4 illustrates good patterns of a 2-sized
cluster whose neighbors are triangles.

The analysis of free 2-sized clusters is similar to 3-sized ones. Consider the
“only if” direction in the proof of Lemma 2, let C be a 2-sized cluster, it holds
that

(1) if contracting C is equivalent to removing C, then S(I) \ {C} is a solution
set of I ′;

(2) otherwise, S(I) \ {C} ∪ {C ′} is a solution set of I ′ where C ′ is the cluster
incident to C, see Figure 4.

Now we consider the influence of 2-sized clusters to the “if” direction. It
introduces a new way to force the existence of some edge in case (b) and (c).
Taking (b) for instance, if edge df is some 2-sized cluster, then we know that
we must keep it in the valid set. However, it is easy to check that, in this case,
cluster df is not good as we cannot draw a path across its pattern. The similar
argument holds for (c).

Therefore both Theorem 1 and Lemma 2 can be generalized to p-RHMC3.

Theorem 2 p-RHMC3 can be solved in O(6kn) time.

Lemma 3 Let I = ({Ci : 1 ≤ i ≤ n}, k) be an instance of p-RHMC3 and C a
free cluster, I ′ be the instance obtained from I by contracting C. Then I is a
YES instance if and only if I ′ is a YES instance.

Lemma 4 Let I ′ = ({Ci : 1 ≤ i ≤ n′}, k) be the reduced instance of p-RHMC3

after exhaustively applying the reduction rule. If I ′ is a YES instance, then
n′ ≤ 22k.

Proof Since I ′ is a YES instance, there exists a set of clusters S(I ′) with
|S(I ′)| ≤ k such that after removing S(I ′), all the clusters left are free. Let L
be these free clusters left and C ∈ S(I ′) be a cluster. Consider the set L∪{C},
some free cluster may become non-free. But this number is bounded by some
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Fig. 5 A subgraph that every cluster is good.

Fig. 6 The shaded cluster affects 21 clusters.

constant because C can only touch a constant number of clusters which form
good pattern, and since these clusters are good before adding C, they can only
have a constant number of neighbors.

The extreme case is constructed as follow: First consider the subgraph
depicted in Figure 5, every cluster is good: (A) and (B) is of pattern (j), (C)
is of pattern (i) and (D) is of pattern (h). Symmetrically, the three clusters to
the right of (A) are also good.

However, if we add a bad cluster that share one vertex with (A) then
all these seven clusters become non-free. Figure 6 shows the extreme case in
which adding the shaded cluster can change at most 21 clusters (i.e., three
copies of the subgraph in Figure 5) from free to non-free ones. Therefore, the
total number of clusters in I ′ does not exceed 22k. ⊓⊔

Theorem 3 p-RHMC3 has a kernel of size 22k.

Remark 1 The proof of Lemma 2 implies that there is a solution set which
contains no contracted cluster. Thus the 22k kernel directly implies a 22-
approximation algorithm for RHMC3, i.e. choose all clusters corresponding to
ones in the kernel as solution.

Combining Theorem 2 and Theorem 3, we have

Corollary 1 p-RHMC3 can be solved in time O(k · 6k + n).

4 An FPT Algorithm for p-RHMC2

In [8], a 5k weak kernel (loosely speaking, parameterized search space) is con-
structed for p-RHMC2. That immediately implies an FPT algorithm which
runs in O∗(

(
5k
k

)
) = O∗(23.61k) time. Here we present an FPT algorithm which

runs in O∗(2.45k) time, using the well-known bounded search-tree method.
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First notice that RHMC2 problem is equivalent to Minimum co-Path Set
problem.

Given a simple undirected graph G, a co-path set is a set S of edges in G
whose removal leaves a graph in which every connected component is a path.
And the problem is to decide whether there exists a co-path set of size k.

For an instance of RHMC2, we let V (G) be the set of markers Σ, and
{u, v} ∈ E(G) if there is some cluster Ci = {u, v}. It is then easy to verify
these two problems are equivalent.

Hence in the following, we describe the algorithm in term of Minimum
co-Path Set problem.

We start with a simple lemma.

Lemma 5 If there are two edges e1 = (u, v) and e2 = (v, w) in G, where
d(u) = d(w) = 3 and d(v) = 2, then there exists an optimal solution for
RHMC2 which does not delete e1 and e2.

Proof Let N(u) = {v, u′, u′′} and N(w) = {v, w′, w′′}. It suffices to prove that
if e1 or e2 (or both) is deleted in some optimal solution S, then we can replace
e1 with one edge from (u, u′) and (u, u′′) or replace e2 with one of (w,w′) and
(w,w′′) (or both) to obtain another optimal solution which is at least as good
as S. Suppose that e1 is deleted in some optimal solution S for RHMC2, then
after all the edges in S are deleted, v is the end of some path P . We consider
three cases (see Figure 7).

(1) If u′ ∈ P and u′′ /∈ P (or vice versa), which means (u, u′) (resp. (u, u′′))
is also deleted for S, then replace e1 with this deleted edge (u, u′) (resp.
(u, u′′)). Clearly, P is replaced by a new path of the same length.

(2) If u′ ∈ P and u′′ ∈ P , then we can assume that u ∈ P (otherwise, we can
add e1 back to P obtain a longer path whose endpoint is u). Consequently,
the path is either in the form ⟨v, · · · , u′, u, u′′, · · · ⟩ or ⟨v, · · · , u′′, u, u′, · · · , ⟩.
We can replace e1 with (u, u′) in the former case or replace e1 with (u, u′′)
in the latter case, to obtain a new path with the same size as P .

(3) If u′ /∈ P and u′′ /∈ P , then we can replace e1 with either (u, u′) or (u, u′′)
to have a new solution of the same size as that of S. The argument for e2
is similar hence omitted.
⊓⊔

Corollary 2 If there is a path P = ⟨u, v1, · · · , vk, w⟩ in G with d(u) = d(w) =
3, and d(vi) = 2 for all 1 ≤ i ≤ k, then there is an optimal solution for RHMC2

in which all the edges along the path P are reserved (i.e., not deleted).

Lemma 6 Given a vertex v, if N(v) = {v1, v2, v3} and d(v1) = d(v2) =
d(v3) = 2, then there exists an optimal solution for RHMC2 which deletes
either (v, v1) or (v, v2).

Proof Assume to the contrary that the optimal solution does not delete (v, v1)
and (v, v2), instead it deletes (v, v3). Then due to the fact that d(v3) = 2 before



10 Chihao Zhang et al.

v
wu

u’

u"

w’

w"

Fig. 7 Illustration for the proof of Lemma 5.

the deletion, v3 is the endpoint of some path P . We have two cases. (1) If v1 ∈ P
and v2 ∈ P , then the path is either in the form ⟨v3, · · · , v1, v, v2, · · · , ⟩ or in
the form ⟨v3, · · · , v2, v, v1, · · · , ⟩, and we can replace (v, v3) with (v, v1) in the
former case or replace (v, v3) with (v, v2) in the latter case. (2) If v1 /∈ P and
v2 /∈ P , we can replace (v, v3) with either (v, v1) or (v, v2). In both cases we
obtain an alternative optimal solution for RHMC2. ⊓⊔

Algorithm Bounded Search Co-path Set
Input: Graph G, integer k
Output: A Co-path set S of size k
1 While there exists a vertex v such that d = d(v) ≥ 4, choose all but two of
its incident edges and put them in S.
2 While there exists a vertex v satisfying Lemma 6, choose one of its two
incident edges and put it in S following Lemma 6.
3 While there exists vertices u, v, w satisfying Lemma 5, reserve edges (u, v) and
(v, w) following Lemma 5.
4 For a path P = ⟨u, v, w⟩, where N(v) = {u,w, a}, N(u) = {v, b, c},
and N(w) = {v, g, h}

4.1 add (u, v) and (w, g) to S;
4.2 or add (u, v) and (w, h) to S;
4.3 or add (u, b) and (v, w) to S;
4.4 or add (u, b) and (v, a) to S;
4.5 or add (u, c) and (v, w) to S;
4.6 or add (u, c) and (v, a) to S.

5 Repeat Steps 2,3,4 until every vertex has degree less than 3.
6 Choose an arbitrary edge from each cycle and put it in S.
7 Return S.

Theorem 4 Algorithm Bounded Search Co-path Set computes a co-path set
in O∗(6k/2) ≈ O∗(2.45k) time.

Proof Step 1 has a recurrence relation

f(k) =

(
d

d− 2

)
f(k − (d− 2)), d ≥ 4.

Step 2 has a recurrence relation

f(k) = 2f(k − 1).

Step 3 has a recurrence relation

f(k) = 4f(k − 2).
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Step 4 branches on whether (u, v) is deleted or not. If (u, v) is deleted, then
(v, w) is reserved and either (w, g) or (w, h) is also deleted; if (u, v) is reserved
then at least one of (u, b) and (u, c), as well as at least one of (v, w) and (v, a)
are deleted. So step 4 has a recurrence relation

f(k) = 6f(k − 2).

f(k) achieves its maximum value when d = 4 or f(k) = 6f(k− 2), so we have
f(k) ≤ O∗((6)k/2) ≈ O∗(2.45k). ⊓⊔

5 Concluding Remarks

In this paper, we studied the Radiation Hybrid Map Construction problem us-
ing parameterized algorithms. For p-RHMC3, where each gene cluster contains
at most three genes, we showed an FPT algorithm based on a linear kernel of
it. For p-RHMC2, we presented a bounded search-tree algorithm which runs in
O∗(2.45k) time, greatly improving the previous bound using weak kernels. An
important open question is whether one can extend these methods to handle
p-RHMCd, where each gene cluster contains at most d genes. Furthermore, does
the generalized version p-RHMC remain FPT? Does it have a (small) kernel?
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